Aviso: Se está a ler esta mensagem, provavelmente, o browser que utiliza não é compatível com os "standards" recomendados pela W3C. Sugerimos vivamente que actualize o seu browser para ter uma melhor experiência de utilização deste "website". Mais informações em webstandards.org.
Warning: If you are reading this message, probably, your browser is not compliant with the standards recommended by the W3C. We suggest that you upgrade your browser to enjoy a better user experience of this website. More informations on webstandards.org.
References[1] Mazars, J. and Pijaudier-Cabot, G. (1996). From damage to fracture mechanics and conversely: a combined approach. International Journal of Solids and Structures, 33:3327-3342. [2] Jirasek, M. (1998). Nonlocal models for damage and fracture: comparison of approaches. International Journal of Solids and Structures, 35:4133-4145. [3] Jirasek, M. (2001). Modelling of localized damage and fracture in quasi- brittle materials. In Vermeer, P. A. and et al, editors, Continuous and discontinuous modelling of cohesive frictional materials, Lecture Notes in Physics 568, pp. 17-29. Springer, Berlin. [4] Bazant, Z. P. and Cedolin, L. (1991). Stability of structures: elastic, inelastic, fracture, and damage theories. Oxford University Press. [5] Carpinteri, A. (1986). Mechanical damage and crack growth in concrete: plastic collapse to brittle fracture. Martinus Nijhoff Publishers, 1st edition. [6] Mazars, J. and Walter, D. (1980). Endommagement mecanique du beton. In Délégation Générale à la Recherche Scientifique et Technique, numero 78.7.2697 e 78.7.2698. France. [7] Krajcinovic, D. (1996). Damage mechanics. North-Holland, 1st edition. [8] Ibijola, E.A. (2002). On some fundamental concepts of Continuum Damage Mechancis, Computer Methods in Applied Mechanics and Engineering, 191:1505-1520. [9] Planas, J. and Elices, M. (1992). Asymptotic analysis of a cohesive crack: 1. Theoretical background. International Journal of Fracture, 55:153-177. [10] Planas, J. and Elices, M. (1993). Asymptotic analysis of a cohesive crack: 2. Influence of softening curve. International Journal of Fracture, 64:221-237. [11] Cirak, F, Ortiz, M. and Pandolfi, A. (2005). A cohesive approach to thin-shell fracture and fragmentation. Computer Methods in Applied Mechanics and Engineering, 194:2604-2618. [12] de Borst, R., Gutierrez, M.A., Wells, G.N., Remmers, J.J.C. and Askes, H. (2004). Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. International Journal for Numerical Methods in Engineering, 60:289-315. [13] Stolarska, M., Chopp, D.L., Moes, N. and Belytshko, T. (2001). Modelling crack growth by set levels in the extended finite element method for cohesive crack growth. International Journal for Numerical Methods in Engineering, 51:943-960. [14] Wells, G.N., Sluys, L.J., and De Borst, R. (2002). Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. International Journal for Numerical Methods in Engineering, 53:1235-1256. [15] Comi, C., Mariani, S., and Perego, U. (2002). From localized damage to discrete cohesive crack propagation in nonlocal continua. In Mang, H. A., Rammerstorfer, F. G., and Eberhardsteiner, J., editors, Fifth World Congress on Computational Mechanics. [16] Oliver, J., Huespe, A.E. and Pulido, M.D.G. (2002). From continuum mechanics to fracture mechanics: the strong discontinuity approach. Engineering Fracture Mechanics, 69:113-136. [17] Comi, C., Mariani, S., and Perego, U. (2002). On the transition from continuum nonlocal damage to quasi-brittle discrete crack models. In Proceedings of the Third Joint Conference of Italian Group of Computational Mechanics and Ibero-Latin American Association of Computational Methods in Engineering. [18] Comi, C., Mariani, S., and Perego, U. (2004). An extended finite element strategy for the analysis of crack growth in damaging concrete structures. In Neittaanmaki, P., Rossi, T, Korotov, S., Onate, E., Périaux, J. and Knorzer, D., editors, ECCOMAS 2004, Jyvaskyla. [19] Simone, A. (2003). Continuous-discontinuous modelling of failure. PhD Thesis, Delft Technical University, Delft. [20] Simo, J. C. and Ju, J. W. (1987). Strain- and stress-based continuum damage models - i. formulation. International Journal of Solids and Structures, 23:821-840. [21] Mazars, J. and Pijaudier-Cabot, G. (1989). Continuum damage theory - application to concrete. ASCE Journal of Engineering Mechanics, 115:345-365. [22] LaBorderie, C. (1991). Phenomenes unilateraux dans un materiau endommageable: modelisation et application a l'analyse de structures en beton. PhD Thesis, Université Paris 6, Paris. [23] Fremond, M. and Nedjar, B. (1996). Damage, gradient of damage and principal of virtual power. International Journal of Solids and Structures, 33:1083-1103. [24] Comi, C. and Perego, U. (2001). Fracture energy based bi- dissipative damage model for concrete. International Journal of Solids and Structures, 38:6427-6454. [25] Chaboche, J. L. (1979). Le concept de contrainte effective, applique a l'élasticité et à la viscoplasticité en presence d'un endommagement anisotrope. Numéro 295 em Col. Euromech 115, pp. 737-760. Editions du CNRS, Grenoble. [26] Faria, R. (1994). Avaliação do comportamento sísmico de barragens de betão através de um modelo de dano contínuo. PhD Thesis, Faculdade de Engenharia da Universidade do Porto, Porto. [27] Kachanov, L. M. (1958). Time of the rupture process under creep conditions. Izvestija Akademii Nauk SSSR, Otdelenie Techniceskich Nauk, 8:26-31. [28] Kachanov, L. M. (1986). Introduction to continuum damage mechanics. Kluwer. [29] Rabotnov, Y. N. (1968). Creep rupture. In 12th International Congress of Applied Mechanics. Stanford. [30] Lemaitre, J. and Chaboche, J.-L. (1985). Mécanique des matériaux solides. Dunod, 1st edition. [31] Lemaitre, J. (1992). A course on damage mechanics. Springer-Verlag, 1st edition. [32] Chaboche, J. L. (1978). Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement. PhD Thesis, Université Paris 6, Paris. [33] Mazars, J. (1984). Application de la mécanique de l'endommagement au comportement non lineaire et à la rupture du béton de structure. PhD Thesis, Université Paris 6, Paris. [34] Mazars, J., Pijaudier-Cabot, G., and Saouridis, C. (1991). Size effect and continuous damage in cementitious materials. International Journal of Fracture, 51:159-173. [35] Comi, C. and Perego, U. (2000). A bi-dissapative damage model for concrete with applications to dam engineering. In ECCOMAS 2000. [36] Comi, C. (2001). A nonlocal model with tension and compression damage mechanics. European Journal of Mechanics A/Solids, 20:1-22. [37] Cervera, M., Oliver, J., and Faria, R. (1995). Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering and Structural Dynamics, 24:1225-1245. [38] Cordebois, J. P. and Sidoroff, F. (1982). Anisotropic damage in elasticity and plasticity. Journal de Mécanique téorique et appliquée, 2:45-60. [39] Ramtani, S., Berthaud, Y., and Mazars, J. (1992). Orthotropic behavior of concrete with directional aspects: modelling and experiments. Nuclear Engineering and Design, 133:97-111. [40] Proença, S. P. B. and Pituba, J. J. C. (2003). A damage constitutive model accounting for induced anisotropy and bimodular elastic response. Latin American Journal of Solids and Structures, São Paulo, 1(1):101-117. [41] Krajcinovic, D. and Fonseka, G. U. (1981). The continuous damage theory of brittle materials. Journal of Applied Mechanics, 48:809-824. [42] Vakulenko, A. A. and Kachanov, M. L. (1971). Continuum theory of medium with cracks (in russian). Mekhanika Tverdogo Tela, 4:159-166. [43] Ortiz, M. (1985). A constitutive theory for the inelastic behavior of concrete. Mechanics of Materials, 4:67-93. [44] Addessi, D., Marfia, S. and Sacco, E. (2002). A plastic nonlocal damage model. Computer Methods in Applied Mechanics and Engineering, 191:1291-1310. [45] Bazant, Z. P. and Jirasek, M. (2002). Nonlocal integral formulations of plasticity and damage: survey of progress. ASCE Journal of Engineering Mechnics, 128:1119-1149. [46] Lee, J. and Fenves, G. L. (1998). A plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering and Structural Dynamics, 27:937-956. [47] Lu, M., Mai, Y.W. and Ye, L. (2001). Crack-tip field for fast fracture of an elastic-plastic-viscoplastic material coupled with quasi-brittle damage. Part 2. Small damage regime. International Journal of Solids and Structures, 38:9403-9420. [48] Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25:299-326. [49] Proença, S. P. B. and Balbo, A.R. (2004). On a regular convex solver potential for an elastic-damage constitutive model: a theoretical analysis. International Journal of Solids and Structures, 41(7):1975-1989. [50] Benallal, A., Billardon, R., and Geymonat, G. (1988). Some mathematical aspects of the damage softening problem. In Mazars, J. and Bazant, Z. P., editors, Cracking and damage, pp. 247-258. Elsevier Science, Amsterdam. [51] Bazant, Z. P. (1976). Instability, ductility, and size effect in strain-softening concrete. ASCE Journal of Engineering Mechanics, 102:331-344. [52] Jirasek, M. (2002). Objective modeling of strain localization. Revue française de génie civile, 6:1119-1132. [53] Pijaudier-Cabot, G. and Benallal, A. (1993). Strain localization and bifurcation in a nonlocal continuum. International Journal of Solids and Structures, 30:1761-1775. [54] Bazant, Z. P. and Oh, B.-H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16:155-177. [55] Oliver, J. (1989). A consistent characteristic length for smeared cracking models. International Journal for Numerical Methods in Engineering, 28:461-474. [56] Faria, R. (1994). Avaliação do comportamento sísmico de barragens de betão através de um modelo de dano contínuo. PhD Thesis. Faculdade de Engenharia da Universidade do Porto, Porto. [57] Pijaudier-Cabot, G. and Bazant, Z. P. (1987). Nonlocal damage theory. ASCE Journal of Engineering Mechanics, 113:1512-1533. [58] Bazant, Z. P. and Pijaudier-Cabot, G. (1989). Measurement of characteristic length of nonlocal continuum. ASCE Journal of Engineering Mechanics, 115:755-767. [59] Bazant, Z. P. and Lin, F.-B. (1988). Nonlocal smeared cracking model for concrete fracture. Journal of Structural Engineering - ASCE, 114:2493-2510. [60] Bazant, Z. P. and Pijaudier-Cabot, G. (1988). Nonlocal continuum damage, localization instability and convergence. Journal of Applied Mechanics, 55:287-293. [61] Bazant, Z. P. (1994). Nonlocal damage theory based on micromechanics of crack interaction. ASCE Journal of Engineering Mechnics, 120:593-617. [62] Bazant, Z. P. and Jirasek, M. (1994). Damage nonlocality due to micro-crack interactions: Statistical determination of crack influence function. In Bazant, Z. P., Bittnar, Z., Jirasek, M., e Mazars, J., editors, Fracture and Damage in Quasibrittle Structures: Experiment, Modelling and Computer Analysis, pp. 3-17. E and FN Spon, London. [63] Borino, G., Fuschi, P., and Polizzotto, C. (1999). A thermodynamic approach to nonlocal plasticity and related variational principles. Journal of Applied Mechanics, 66:952-963. [64] Comi, C. and Perego, U. (2001). Non-local aspects of non-local damage analyses of concrete structures. European Journal of Finite Elements, 10:227-242. [65] Comi, C. and Perego, U. (2001). Symmetric and non-symmetric non-local damage formulations: an assessment of merits. In ECCM-2001. [66] Comi, C. and Perego, U. (2004). Criteria for mesh refinement in non-local damage finite element analyses. European Journal of Mechanics A/Solids, 23:615-632. [67] Jirasek, M. (1999). Computational aspects of non-local models. In ECCM 99. [68] Jirasek, M. and Patzak, B. (2002). Consistent tangent stiffness for non-local damage models. Computers & Structures, 80:1279-1293. [69] Pamin, J. (1994). Gradient-dependent plasticity in numerical simulation of localization phenomena. PhD Thesis, Delft Technical University, Delft. [70] Comi, C. and Driemeier, L. (1998). On gradient regularization for numerical analysis in the presence of damage. In de Borst, R. and van der Giessen, E., editors, Material Instabilities in Solids, pp. 425-440. John Wiley & Sons, Chichester. [71] Comi, C. (1999). Computational modelling of gradient-enhanced damage in quasi-brittle materials. Mechanics of Cohesive-frictional Materials, 4:17-36. [72] Comi, C. and Perego, U. (1996). A generalized variable formulation for gradient dependent softening plasticity. International Journal for Numerical Methods in Engineering, 39:3731-3755. [73] Driemeier, L., Proença, S. P. B. and Comi, C. (2005). On non-local regularization in one dimensional finite strain elasticity and plasticity. Computational Mechanics, 36(1):34-44. [74] Driemeier, L., Proença, S.P.B. and Alves, M. (2005). A contribution to the numerical nonlinear analysis of three dimensional truss systems considering large strains, damage and plasticity. Communications in Nonlinear Science and Numerical Simulation, 10(5): 515-535. [75] Peerlings, R. H. J. (1999). Enhanced damage modelling for fracture and fatigue. PhD Thesis, Delft Technical University, Delft. [76] Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., and de Vree, J. H. P. (1996). Gradient-enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39:3391-3403. [77] Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., de Vree, J. H. P., and Spee, I. (1996). Some observations on localization in non-local and gradient damage models. European Journal of Mechanics A/Solids, 15(6):937-953. [78] Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998). Gradient-enhanced damage modelling of concrete fracture. Mechanics of Cohesive-Frictional Materials, 3:323-342. [79] Muhlhaus, H. B. and Aifantis, E. C. (1991). A variational principle for gradient plasticity. International Journal of Solids and Structures, 28:845-857. [80] Engelen, R. A. B., Geers, M. G. D., and Baaijens, F. P. T. (2003). Non- local implicit gradient-enhanced elastoplasticity for the modelling of softening behaviour. International Journal of Pasticity, 19:403-433. [81] Peerlings, R. H. J., Geers, M. G. D., de Borst, R., and Brekelmans, W. A. M. (2001). A critical comparison of nonlocal and gradient-enhanced softening continua. International Journal of Solids and Structures, 38:7723-7746. [82] Barros, F. B. (2002). Métodos sem malha e método dos elementos finitos generalizados em análise não-linear de estruturas. PhD Thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo. [83] Geers, M. (2004). Course on damage mechanics, Lecture notes (4K060). Technische Universiteit Eidhoven, Eidhoven. [84] Jirasek, M. and Bazant, Z. P. (2002). Inelastic analysis of structures. John Wiley & Sons. [85] Cotterell, B. and Mai, Y. W. (1996). Fracture mechanics of cementitious materials. Chapman and Hall, 1st edition. [86] Elices, M. e Planas, J. (1989). Material models. In Elfren, L., editor, Fracture Mechanics of Concrete Structures - from theory to applications, pp. 16-66. Chapman and Hall, London. [87] Jirasek, M. (2004). Modeling of localized inelastic deformation, Lecture notes. Czech Technical University, Prague. [88] Lemaitre, J. and Desmorat, R. (2005). Engineering Damage Mechanics: Ductile, Creep, Fracture and Brittle Failures. Springer, Berlin. [89] Proença, S. (2000). Introdução à mecânica do dano e fracturamento, Lecture notes. Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo. [90] Freitas, J. A. T., Almeida, J. P. M., and Pereira, E. M. B. R. (1996). Non-conventional formulations for the finite element method. Structural Engineering and Mechanics, 4:655-678. [91] Freitas, J. A. T., Almeida, J. P. M., and Pereira, E. M. B. R. (1999). Non-conventional formulations for the finite element method. Computational Mechanics, 23:488-501. [92] Silva, C. M. (2006). Modelos de Dano em Elementos Finitos Híbridos e Mistos. PhD Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon. [93] Silva, C. M. and Castro, L. M. S. S. (2003). Aplicação de modelos híbridos-mistos à análise fisicamente não-linear de pórticos de betão armado. In Barbosa, J. I., editor, VII Encontro Nacional de Mecanica Aplicada e Computacional. Universidade de Évora. [94] Silva, C. M. and Castro, L. M. S. S. (2003). Hybrid-mixed stress model for the non-linear analysis of concrete structures. In Topping, B. H. V., editor,The Ninth International Conference on Civil and Structural Engineering Computing. Civil-Comp Press, Stirling, Scotland. [95] Silva, C. M. and Castro, L. M. S. S. (2005). Hybrid-mixed stress model for the nonlinear analysis of concrete structures. Computers & Structures, 83:2381-2394. [96] Pereira, E. M. B. R. and Freitas, J. A. T. (2000). Numerical implementation of a hybrid-mixed finite element model for reissner-mindlin plates. Computers & Structures, 74:323-334. [97] Pereira, E. M. B. R. (1993). Elementos finitos de tensão - aplicação à análise elástica de estruturas. PhD Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon. [98] Castro, L. M. S. S. (1996). Wavelets e séries de Walsh em elementos finitos. PhD Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon. [99] Silva, C. M. and Castro, L. M. S. S. (2004). Modelos híbridos-mistos com dano contínuo. In Soares, C. M., Batista, A. L., Bugeda, G., Casteleiro, M., and et al, editors, Congresso de Métodos Computacionais em Engenharia. APMTAC, SEMNI. [100] Silva, C. M. and Castro, L. M. S. S. (2004). Hybrid-mixed stress formulations with continuum damage models. In Lyra, P. R. M., da Silva, S. M. B. A., Magnani, F. S., and et al, editors, XXV CILAMCE. Recife, Brasil. [101] Silva, C. M. and Castro, L. M. S. S. (2006). Hybrid-mixed stress formulation using continuum damage models. Communications in Numerical Methods in Engineering. 22:605-617. [102] Silva, C. M. and Castro, L. M. S. S. (2004). Non-conventional finite element models using continuum damage mechanics. In Topping, B. H. V. and Soares, C. A. M., editors, The Seventh International Conference on Computational Structures Technology. Civil-Comp Press, Stirling, Scotland. [103] Silva, C. M. and Castro, L. M. S. S. (2006). Hybrid-displacement (trefftz) formulation for softening materials. Computers & Structures, accepted for publication. [104] Cismasiu, C. (2000). The hybrid-Trefftz displacement element for static and dynamic structural analysis problems. PhD Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon. [105] Freitas, J. A. T., Cismasiu, C., and Wang, Z. M. (1999). Comparative analysis of hybrid-trefftz stress and displacements elements. Archives of Computational Mechanics Engineering, 6:1-26. [106] Silva, C. M. and Castro, L. M. S. S. (2005). Modelos híbridos de deslocamento com dano contínuo. In Aparicio, J. L. P., de Sa, J. C., Delgado, R., Gallego, R., Martins, J., Pasadas, M., and Ferran, A. R., editors, Congreso de Métodos Numéricos en Ingeniería. SEMNI. [107] Bazant, Z. P. and Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton, 1st edition. [108] Hillerborg, A., Modeer, M., and Peterson, P. E. (1976). Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6:773-782. [109] Bocca, P., Carpinteri, A. and Valente, S. (1991). Mixed mode fracture of concrete. International Journal of Solids and Structures, 27:1139-1153. [110] Xu, X.-P. and Needleman, A. (1994). Numerical simulation of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids, 42:1397-1434. [111] Ortiz, Camacho. (1996). Computational modeling of impact damage in brittle materials. International Journal on Solids and Structures, 33:20-22. [112] Moes, N. and Belytshko, T. (2002). Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 69:813-833. [113] Wells, G.N. and Sluys, L.J. (2001). A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering, 50:2667-2682. [114] Sukumar, N. and Prévost, J.H. (2003). Modeling quasi-static crack growth with the extended finite element method. Part I: Computer implementation. International Journal of Solids and Structures, 40:7513- 7537. [115] Huang, R., Sukumar, N. and Prévost, J.H. (2003). Modeling quasi-static crack growth with the extended finite element method. Part II: Numerical applications. International Journal of Solid and Structures, 40:7539-7552. [116] Simo, J. C., Oliver, J., and Armero, F. (1993). An analysis of strong discontinuities induced by strain softening in rate-independent inelastic solids. Computacional Mechanics, 12:277-296. [117] Jirasek, M. (2002). Comparative study on finite elements with embedded cracks. Computer Methods in Applied Mechanics and Engineering, 188:307-330. [118] Areias, P.M.A. and Belytshko, T. (2005). Analysis of three-dimensional crack initiation and propagation using the extended finite element method. International Journal for Numerical Methods in Engineering, 63:760-788. [119] Comi, C., Mariani, S., and Perego, U. Cohesive crack propagation in damaging concrete structures discretized by extended finite elements. 11th International Congress on Fracture, Torino, Italy. [120] Daux, Moes, N., Dolbow, Sukumar, N. and Belytshko, T. (2001). Arbitrary branched and intersecting cracks with extended finite element method. International Journal for Numerical Methods in Engineering, 48:1741-1761. [121] Gravouil, A., Moes, N. and Belytshko, T. (2002). Non-planar 3-D crack growth by the extended finite element method and level - Part II: level set update. International Journal for Numerical Methods in Engineering, 53:2569-2586. [122] Mariani, S. and Perego, U. (2003). Extended finite element method for quasi-brittle fracture. International Journal for Numerical Methods in Engineering, 58:103-126. [123] Moes, N., Gravouil, A. and Belytshko, T. (2002). Non-planar 3-D crack growth by the extended finite element method and level - Part I: mechanical model. International Journal for Numerical Methods in Engineering, 53:2549-2568. [124] Moes, N., Dolbow, J. and Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46:131-150. [125] Barros, F.B., Proença, S. P. B. and Barcellos, C. S. de. (2004). Generalized finite element method in structural nonlinear analysis - a p adaptive strategy. Computational Mechanics, 33(2):95-107. [126] Duarte, A., Hamzeh, Liska, and Tworzydlo. (2001). A generalized finite element method for the simulation of three-dimensional crack propagation. Computer.Methods in Applied Mechanics and Engineering, 190:2227-2262. [127] Góis, W. and Proença, S.P.B. (2005). Generalized Finite Element Method in mixed variational formulation: a study of convergence and solvability. In Proceedings of the ECCOMAS Thematic Conference on Meshless Methods, Meshless 2005, Lisbon. [128] Góis, W. and Proença, S.P.B. (2006). On mixed variational formulation for Generalized Finite Element Method. (submited to Computer Methods in Applied Mechanics and Engineering) [129] Simone, A., Duarte, A. and Van Der Giessen, E. (2006). A generalized finite element method for polycristals with discontinuous grain boundaries. International Journal for Numerical Methods in Engineering, 67(8):1122-1145. [130] Strouboulis, Babuska, and Copps. (2000). The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 181: 43-69. [131] Strouboulis, Copps and Babuska. (2000). The Generalized Finite Element Method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering, 47:1401-1417. [132] Areias, P.M.A. and Belytshko, T. (2006). Two-scale shear band evolution by local partition of unity. International Journal for Numerical Methods in Engineering, 66:878-910. [133] Duarte, C.A. and Oden, J. T. (1995). Hp Clouds - A Meshless Method to Solve Boundary-Value Problems, Technical Report 95-05, TICAM, The University of Texas at Austin.Ortiz, M., 1988. Microcrack coalescence and macroscopic crack growth initiation in brittle solids. International Journal of Solids and Structures, 24:231-250. [134] Simone, A., 2004. Partition of unity-based discontinuous elements for interface phenomena: computational issues. Communications in Numerical Methods in Engineering, 20(6):465-478. [135] Silva, C.M. and Castro, L.M.S.S. (2006). Hybrid and Mixed Finite Element Formulations for Softening Materials, In ECCM-2006 - III European Conference on Computational Mechanics - Solids, Structures and Coupled Problems in Engineering, Lisbon. [136] Paula, C.F. de and Proença, S.P.B. (2001). Análise dinâmica de estruturas reticuladas planas em concreto armado empregando-se modelos de dano. In XVI Congresso Brasileiro de Engenharia Mecânica. Uberlândia, Brazil. [137] Araújo, F.A. and Proença, S.P.B. (2006). Aplicação de um modelo de dissipação concentrada para o concreto com a consideração de deformações residuais e ciclos de histerese. In VI Simpósio EPUSP sobre Estruturas de Concreto, pp.437-457, São Paulo. [138] Barbosa, A. R. (2001). Wavelets no intervalo, aplicação a elementos finitos. MSc dissertation, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon. [139] Castro, L.M.S.S. and Barbosa, A.R. (2006). Implementation of an hybrid-mixed stress model based on the use of wavelets. Computers & Structures, 84:718-731. [140] Patzak, B. and Jirasek, M. (2004). Adaptive resolution of localized damage in quasibrittle materials. ASCE Journal of Engineering Mechanics, 130:720-732. [141] Freitas, J.A.T., Pimenta, P. M., de and Proença, S. P. B. (2003). Hybrid-Mixed Meshless Formulation. In International Workshop on Meshfree Methods, Lisbon. [142] Pimenta, P. M., Freitas, J.A.T., de and Proença, S. P. B. (2002). Elementos finitos híbrido-mistos com enriquecimento nodal. In V Congreso de Metodos Numericos en Ingenieria, Madrid. [143] Proença, S.P.B. and Barros, F.B. (2000). Meshless methods applied to linear and nonlinear structural analysis. In European Congress On Computational Methods in Applied Sciences and Engineering, ECCOMAS/2000, Barcelona. [144] Tiago, C.M., Castro, L.M.S.S. and Leitão, V.M.A. (2003). Trefftz and RBF-based formulations for concrete beams analysis using damage models. Computer Assisted Mechanics and Engineering Sciences, 10:641-660. [145] Lancaster, P. and K. Aalkauskas (1981). Surfaces generated by moving least squares methods. Mathematics of Computation 37(155): 141-158. [146] Belytschko, T., Y. Y. Lu, and L. Gu (1994). Element-Free Galerkin Methods. International Journal for Numerical Methods in Engineering 37(2): 229-256. [147] Mendes, L. A. M. (2002). Modelos de elementos finitos hibridos-mistos de tensao na analise elastoplastica de estruturas laminares planas. MSC dissertation, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon. [148] Freitas, J.A.T. (1999). Hybrid finite element formulations for elastodynamic analysis in the frequency domain. International Journal of Solids and Structures, 36:1883-1923. [149] Freitas, J.A.T. and Wang, Z.M. (2001). Elastodynamic analysis with hybrid stress finite elements. Computers & Structures, 79:1753-1767. [150] Freitas, J.A.T. (2002). Mixed finite element formulation for the solution of parabolic problems. Computer Methods in Applied Mechanics and Engineering, 191:3425-3457. [151] da Silva, M.J.V., Barbosa, A.R., Pereira, E.M.B.R. and Castro, L.M.S.S. (2005). Utilização de um Modelo Híbrido-Misto na Análise Dinâmica de Estruturas Reticuladas Planas. In Congreso de Métodos Numéricos en Ingeniería, edited by SEMNI, Granada. [152] Pina, J.P.P., Freitas, J.A.T. and Castro, L.M.S.S. (2004). Utilização de wavelets em análise dinâmica. In Métodos Computacionais em Engenharia, edited by APMTAC, Lisbon. [153] Freitas, J. A. T. and Ji, Z. Y. (1996). Hybrid-trefftz finite element formulation for simulation of singular stress fields. International Journal for Numerical Methods in Engineering, 39:281-308. [154] Freitas, J. A. T. and Ji, Z. Y. (1996). Hybrid-trefftz finite equilibrium model for crack problems. International Journal for Numerical Methods in Engineering, 39:569-584. [155] Ruiz, G., Pandolfi, A. and Ortiz, M. (2001). Three-dimensional cohesive model of dynamic mixed-node fracture. International Journal for Numerical Methods in Engineering, 52:97-120. [156] Pandolfi, A. and Ortiz, M. (2002). An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers, 18:148-149. [157] Korelc, J. and Wriggers, P. (1996). An efficient 3-D enhanced strain element with Taylor expansion of the shape functions. Computational Mechanics, 19:30-40. [158] Mediavilla, J., Peerlings, R.H.J. and Geers, M.G.D. (2006). Discrete crack modelling of ductile fracture driven by non-local softening plasticity. International Journal for Numerical Methods in Engineering, 66(4):571-760. |