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Abstract: A new method for detecting spikes in acoustic Doppler velocimeter data sequences is suggested. The method combines thr
conceptsi(1) that differentiation enhances the high frequency portion of a sig@pthat the expected maximum of a random series is
given by the Universal threshold, a®) that good data cluster in a dense cloud in phase space or Poinapse These concepts are used

to construct an ellipsoid in three-dimensional phase space, then points lying outside the ellipsoid are designated as spikes. The n
method is shown to have superior performance to various other methods and it has the added advantage that it requires no parame
Several methods for replacing sequences of spurious data are presented. A polynomial fitted to good data on either side of the spike ev
then interpolated across the event, is preferred by the authors.
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Introduction componentge.g., Roy et al. 1999 that the maximum of a white
noise sequence is given by the Universal threstiblonoho and

Acoustic Doppler velocimeter@ADVs) have become our instru-  Johnstone 1994; Katul and Vodakovic 1998nd the use of Poin-

ment of choice for measuring velocities in our outdoor ecohy- care maps (e.g., Abarbanel 1995; Addison 1997The method

draulics flume(Nikora et al. 1998 and in the field(e.g., Nikora uses the principle that good data lie within a cluster and that any

and Goring 200Q) where other measurement techniques such asdata point lying well outside that cluster must be suspected of

laser Doppler anemometers are impractical. However, ADVs also being a spike. McKinney1993 described a similar method and

have some disadvantages. One of them is the Doppler noise flooapplied it to ocean wave records.

and we discussed ways that we combat this in Nikora and Goring

(1998—see also Voulgaris and Trowbrid¢gE998. Another prob-

lem with ADVs is spikes caused by aliasing of the Doppler Methods

signal—the phase shift between the outgoing and incoming pulse

lies outside the range betweenl80° and+180° and there is ~ Despiking involves two steps(1) detecting the spike an®)

ambiguity, causing a spike in the record. Such a situation canreplacing the spike. The two steps are independent so they are

occur when the flow velocity exceeds the preset velocity range or considered separately here. Indeed, in most cases, the methods for

when there is contamination from previous pulses reflected from Spike detection described in the next section can be mixed inter-

the boundaries of complex geometriesg., cobbles on the bed of ~ changeably with any of the methods for spike replacement in the

a stream Unfortunately, some of these spikes look remarkably following section. However, for the iterative methods, spike re-

similar to natural fluctuations in the velocitfig. ). placement can affect spike detection in the subsequent iterations.

In this article, we consider a number of different ways to de-

tect spikes and how to deal with them. For the cases of a single- spjke petection

point spike, relatively simple despiking algorithms have proved

satisfactory, but the situation with multipoint spikes, as illustrated General

in Fig. 1, has proved to be much more difficult. We have visited Electrical engineers are well aware of the problem of spurious

and revisited the problem several times, each time developing adata and have developed numerous methods for handling them.

solution, only to find that it does not work with the next set of Otnes and Enochsofi978 cover the problenwhich they call

ADV data. The method we have finally developed that works «ild point editing”) in some detail. The first two methods de-

successfully on all of our ADV data is an amalgam of several scribed in this section come from this souk&C Filters Method

ideas: that differentiating a signal enhances the high-frequencyand Tukey 53H Method described in detail beJowhe methods

involve digital filtering to generate two time sequences, one of

Princ. Sci., National Institute of Water and Atmospheric Research, which is “rough” and the other “smooth.” For each point in the

P.O. Box 8602, Christchurch, New Zealand. data sequence, if the difference between the rough and smooth
2Princ. Sci., National Institute of Water and Atmospheric Research, data exceed a threshold, the point is deemed spurious.
P.O. Box 8602, Christchurch, New Zealand. The authors have developed an algorithm for despiking ADV

Note. Discussion open until June 1, 2002. Separate discussions muste.qrqs of turbulence velocities in streatdeceleration Thresh-
be submltte_d for individual papers. To e_xtend the closing dgte by_one olding Method. The method has been used widely in our work
month, a written request must be filed with the ASCE Managing Editor. . . .

(e.g., Nikora and Goring 2000lt is based on the postulate that

The manuscript for this technical note was submitted for review and | . L
possible publication on May 10, 2000; approved on June 28, 2001. This under normal flow conditions the instantaneous acceleration in a

paper is part of thdournal of Hydraulic Engineering Vol. 128, No. 1, stream must be of the same order or less than the acceleration of
January 1, 2002. ©ASCE, ISSN 0733-9429/2002/1-117-126/$8ED gravity g (otherwise sediment grains would be thrown about vio-
per page. lently, which is contrary to observationsThe algorithm calcu-
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Fig. 1. Example of ADV data containing spikes from measurements near bed of stream

lates the accelerations from backward differences and identifiesabove the threshold are retained—this is called “wavelet shrink-
points as spikes if the acceleration exceeds one or two gravities.age.” Thus, the inverse transform of the filtered wavelet coeffi-
Surprisingly, it was found that this criterion was too severe and cients is rendered noise free. Adapting this method to despiking
some apparently valid points were rejected as spikes, yet increassimply entails rejecting the wavelet coefficients above the thresh-
ing the threshold allowed obvious spikes through. Therefore, anold, rather than those below the threshold as when denoising.
additional condition was introduced so that for a point to be a  The threshold they apply arises from a theoretical result from
spike, the acceleration must exceed a threshglyl and the ab- normal probability distribution theory which says that fomde-
solute deviation from the mean velocity of the point must exceed pendent, identically distributed, standard, normal, random vari-
ko, where\, is a relative acceleration threshold,is the stan- ables; the expected absolute maximum is

dard deviation, an#l is a factor, usually taken as 1.5. This method

has proved very successful for records where the spikes are E(&ilmad =V2 Inn=Xy ()
clearly different from fluctuations in the record, but for some
records the choice of thresholds is very difficult and subjective.
Thus, alternative methods have been investigated.

One of thesgWavelet Thresholding Methodarises from the
landmark article by Donoho an(_:i Johnstoﬂé)94_) who_intro- )\U&:m& )
duced a new method for detecting and removing noise from a
signal. Denoising is the converse of despiking, but the principle is The failure of all of the above methods to adequately handle some
similar. In their method the signal is transformed by orthogonal ADV records prompted a radical re-evaluation of the strategy and
wavelet transformation, then the wavelet coefficients at the first the emergence of an idea to see how velocity and its derivatives
scale, which contain most of the noise in the signal, are comparediook in phase spacéwve call this the Phase-Space Thresholding
to a threshold. Those below the threshold are set to zero and thosenethod, Fig. 2. It is immediately apparent that most of the data

where\ is termed the Universal threshold. For a normal, ran-
dom variable whose standard deviation is estimated land the
mean is zero, the expected absolute maximum is

200

-4 150
1/g du/dt
/g du ) u(em 5‘1)

Fig. 2. Phase space showing cloud of data from ADV measurements, where derivatives have been scaled by acceleration of gravity
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cluster in an ellipsoid cloud, and the spikes are separated fromWavelet Thresholding MethadThis method is a detection and
this cloud. The separation of the spikes is exaggerated for thereplacement method that is similar to the previous method, except
derivatives because differentiation accentuates the high-frequencythat all the calculations are done in wavelet space. The wavelet

componentgwhich the spikes belong Yacompared to the low-
frequency components: d"U(w,t)/dt"cw"U(w,t), where
U(w,t), is the Fourier series afi(t), and w is the radial fre-
quency.

Algorithms

There follows an algorithmic description of each of the methods
considered. Before applying any of these methods, we remove th
mean and if the signal contains long-period fluctuations, we re-
move these by high-pass filtering. The mean and the long-period
fluctuations are added back in after despiking.

RC Filters Method The name of this method comes from an
equivalent electrical circuit that can produce the same result
(Otnes and Enochson 197&rom the original time seriag gen-
erate two time serigia; | andu?, where[u;]? is the square of;

after low pass filtering and? is the low pass filter oli?. The
sample variance? is

o?=u?-[u]? 3)
The pointi + 1 is accepted as good if
Ui —ko<Uj 1 <U+ ko (4)

wherek=parameter, usually set between 3 and 9.

Tukey 53H Method The Tukey 53H method uses the principle

that the median is a robust estimator of the mean to generate a
smooth time sequence that can be subtracted from the original

signal:
1. Construct a sequeneg’) from the median of the five data
points fromu; _, to U, »;

2. Construct a sequencé? from the median of the three data
points fromu®); to u); ;

3. Construct the Hanning smoothing filten(®= 3(u(?,
+2u@+u?);

4. Construct the sequendg=|u;,—u'®| and reject the point if
A;>ko, wherek is a predetermined threshold andis the
standard deviation af; ; and

5. Replace the spike.

Acceleration Thresholding MethodThis method is a detection

and replacement method with two phases: one for negative accel-
erations and the second for positive accelerations. In each phase,

transform is analogous to the Fourier transform, except that the
basis function(mother wavelet instead of being a continuous
cosine function, is a function that has compact support. In wavelet
space, the signal becomes a series of coefficients, or details, re-
lating to the position in time and degree of dilation of the wavelet.
The wavelet thresholding method uses the lowest scale wavelet
coefficient, often called the first detai,;; (e.g., Ogden 1997

gcalculated from the convolution of the signal with the mother

wavelet with unit dilation and at various timésThere is a wide
range of mother wavelets available, from the simple box shape
(Haap to the more complicated symmetric and asymmetric wave-
lets described in Daubechi€k992). If the Haar mother wavelet is
chosen, this and the previous method reduce to almost the same
algorithm, except that for the wavelet method the indémxcre-
ments by two rather than one. Similar to the acceleration thresh-
olding method, the data are passed through several times until no
more spikes are detected. Before starting, the mean must be re-
moved and to avoid end effects the beginning of the record needs
to be padded out with a number of zeros equal to at least the
number of iterations. The first data point is discarded after each
iteration. In each iteration the steps are:

1. Calculate the  first  wavelet  coefficient, dj;
=7 u(t)d,;(t)dt, where §;(t) is the mother wavelet
centered at, with unit dilation;

2. Identify points whergd, ;| >\ ;6 (this threshold is discussed
below);

3. Establish a sequen&ii of zeros except for the locations of

spikes whered;;=1;

Calculate the inverse wavelet transform aq_fi to yield a
time series of zeros except for the points that are spitkes
identifies the locations in the time series where spikes exist
and

5. Replace the spikes.

There are a number of options for the threshold in Step 2. The one
that is shown uses the Universal threshold, &y. from Donoho

and Johnston€l994. Katul and Vodakovig1998 give two pos-
sibilities for the estimatof:

\/ 1
n/i2—1

whered=mean ofal,i , or, as they state, a more robust value:

n/2

> (dp;—d)?

i=1

o=

®)

1 _
&= 5g7agldi—d])i (6)

numerous passes through the data are made until all data points

conform to the acceleration criterion,g and the magnitude
thresholdko. The steps in each phase are:

1. Calculate the acceleration from=(u;—u;_,)/At, where
At is the sampling interval; and
2. ldentify those points where;<—\,g and u;<—ko and

replace them.

where(---); denotes the mean over

Another alternative is to use the acceleration criterion from the
previous method. An analysis of these options is included in the
Results.

Phase-Space Thresholding MethodHere we introduce a new

Step 2 is repeated until no more spikes are detected, then themethod that uses the concept of a three-dimensional Pointgpe

second phase is begun:

1. Calculate the acceleration as above; and

2. ldentify those points wherg >\ ,g andu;>ko and replace
them.

Step 2 is repeated until no more spikes are detected.

Experience shows that good choices for the parametershgre:

=1-1.5 ank=1.5.

or phase-space plot in which the variable and its derivatives are
plotted against each other. The points are enclosed by an ellipsoid
defined by the Universal criterion and the points outside the el-

lipsoid are designated as spikes. The method iterates until the
number of good data becomes constantequivalently, the num-

ber of new points identified as spikes falls to zeach iteration

has the following steps:
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Fig. 3. Sample datasets used to test despiking algoritliedxclean record andb) contaminated record

1. Calculate surrogates for the first and second derivatives Care must be taken in the calculationtofo ensure that Egs.

from: (10) and(11) do not become ill conditioned. This can occutif
Au=(Uj41—U_1)/2 ) ando 2 are orders of magnitude different. For exampleg if
A2u=(Au;, ,—Au;_1)I2 8) >0 ,2,, then® will be small, buta? sin®® may be significant in
(Note: wedo notdivide by the time stept—the reasons are ~ comparison tob? cos’ and the solution of Eqs(10) and (11)
given below) ma_y_be complex. A solut_|on _to this prob_lem is to_ refrain from
2. Calculate the standard deviations of all three variaktgs, d_|V|d|ng the _num_encal derivatives by the time step in Step 1. This
o4y, ando 2, and thence the expected maxima using the Yiélds velocity differences that are of the same order as the ve-
Universal criterion, Eq(2). locity. It also means that all the axes have the same (aitss *
3. Calculate the rotation angle of the principal axis /ofu; for ADV data).

versusu; using the cross correlation:
Spike Replacement

—tan-1 A2 2

9=tan (2 WA u'/z ui) ©) Once a spike has been detected, the problem becomes one of
) deciding what to replace it with. There are numerous alternatives:
(Note: for Au; versusu; and forA<u; versusAu; 6=0 be- 1. extrapolation from the preceding data poimt=u; ;:

cause of symmetry. 5 . : L

. . . extrapolation from the two preceding points;=2u;_
4. For each pair of variables, calculate the ellipse that has —u p. P gp ! -1
i—2»

maxima and minima from 3 above. Thus, #du; versusuy; the overall mean of the signal:
the major axis is\yo, and the minor axis is\yo,,; for a smoothed estimate; or ’
A2u; versusAu; the major axis i\ o 5, and the minor axis interpolation between the ends of the spike.

: ) > . .
IS )‘U(;’t')ﬁzu’ and IprAl Ui vergusuri] the rSaJolr and rtnlnor axes,t Of these, the smoothed estimate is the most aesthetically pleasing,
?al;] ﬂ; resple?_ |veyf, can be shown Dy elementary geomelry , ¢ it has no more validity than the others. Extrapolation from the
0 be the solution o preceding one or two points is especially efficacious for the ac-

(Ayo)?=a? cos 6+b?sir? o (10) celeration thresholding method where we are passing through the

(A\yoazy)?=a2sir? 6 +b?cos 0 (1) data detecting spikes ahead of us and replacing them. However,

5. For each projection in phase space, identify the points thatfor turbulence data the use of the two preceding points can pro-
lie outside of the ellipse and replace them. duce wild extrapolations. Alternatively, using just one preceding

At each iteration, replacement of the spikes reduces the standargoint can produce deep, wide troughs if the spike has multiple
deviations calculated in 2 and thus the size of the ellipsoid re- points. Using the overall mean of the signal solves this problem,
duces until further spike replacement has no effect. but has the disadvantage that the replacement can introduce an-
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Fig. 4. Phase-space plots féa) clean dataset antb) contaminated dataséhumber of spikes detected are listed in top right corner of each
phase-space plpt

other spike if there is a local departure from the mean. Smootheditself. Interpolation across the spikes works well in most cases,
estimates arise naturally from tRCfilters and Tukey 53H meth-  providing the spike starts and finishes at about the same level; but
ods and are a byproduct of the wavelet metlfodm the remain- if the level at the start is substantially different from the level at
der obtained by subtracting the inverse transform of the first the finish, a straight-line interpolation may generate an additional
wavelet coefficient from the signalHowever, the smoothed es- spike that can be detected, but not replaced. After much search-
timates from these methods contain spurious data from the spikeing, the most satisfactory method we have found is to use a poly-
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Table 1. Results of Applying Five Despiking Methods to Clean Data at about 39 s. We expect that all the algorithms will be able to

set for Various Parameters handle single-point spikes such as that shown in Fig. 1 at about
No. of spike 3rs. o
Method Parameters events The distributions of the test data are presented in Figsadd

b) [corresponding to Figs.(& and b, respectivelj. Each figure

RC filters® k=6 ara contains the three projections of the three-dimensional phase
k=9 187 space(Fig. 2) with the individual data plotted as points and the
Tukey 53H k=1 174 ellipse defined by the Universal thresholds plotted as a continuous
_ k=15 13 curve. The number of points lying outside each ellipse is printed
Acceleration Aa=1,k=15 91 on the upper right of each phase-space plot. Above and alongside
Na=15k=15 5 each phase-space projection is the corresponding histogram show-
Aa=1k=2 46 ing the distribution of points.
Wavelet Aa=1.5 10 We would expect that very few spikes would be found in the
Universal 0 clean record and Table 1 shows to what extent this is true for the
Three-dimensional phase space Universal 9 despiking methods under consideration. In fact, all of them per-
®Butterworth low-pass filter of fifth order with a frequency cutoff at 10% form adequately, except for tHRC filters method that identifies
of the Nyquist frequency was usédnonymous 1995 far too many spikes, no matter how large we make paranketer

An additional difficulty with this method is that its performance
nomial of best fit through the data on either side of the spike, then depends to a large extent on the choice of low-pass filter. The
interpolate across the spike with this polynomial. Trials have Tukey 53H method is quite sensitive to the choice of the param-
shown that for ADV data the best options are to use a third-order eterk, and the acceleration method is more sensitive to the accel-
polynomial (i.e., a cubi¢ through 12 points on either side of the eration threshold than to the velocity threshold. This sensitivity to
spike. A cubic allows enough curvature without introducing extra parameters is a disadvantage of these methods and highlights the
spikes. The number of points for fitting needs to be large for ADV advantage of methods that use the Universal threshold which re-
data to ensure that local, representative levels are found on eithegquires no parameters.
side of the spike. The corollary is that there must not be any  On the other hand, the wavelet method appears to be less
spikes within the 12 data points on either side of the spike under sensitive to the choice of parameters, with the acceleration crite-
consideration. This means that some spike events have to bgion usingA,=1.5 performing almost as well as the Universal
amalgamated, reducing the number of events, but making some othreshold(Table 1. The reason for this is that the localized nature
them wider. Of course, the number of points used in fitting the of the mother wavelet exaggerates the spike when it is trans-
polynomial may depend upon the sampling frequency, but we formed to wavelet space, so that it stands out above the surround-
have found that 12 is suitable for sampling rates in the range froming data.

25 to 100 Hz that we routinely use. The real test of the methods is application to a contaminated
record like that in Fig. 3b. Table 2 lists the number of spikes
detected by each method, using the optimum parameters from

Results Table 1. The first point to note is that in spite of the spiky appear-
ance of Fig. 3b, the number of spikes is small compared to the

Tests were carried out on all five methods to determine the total number of daté<3%y). We also need to point out that while

method that best passes a “clean” sequence unchanged, but willmost of the methods identify individual spikes, the wavelet and

clean up a contaminated data set. We chose, as an example, thghase-space methods identify spike events. In the case of the
clean and contaminated data sets shown in Fig. 3 from our vastwavelet method, these are all two-point events, and for the phase-

library of ADV measurements. In the normal course of events, the space methods the events vary in length from 1 point up to 15

contaminated data set would have been rejected after visual in-points. Fig. 5 shows the way each method handles a typical, com-

spection as having too many spikes, so it is a pathological caseplex, multipoint spike event. All of the methods detect the two

Nevertheless, it provides ample opportunities to test the algo- deep spikes, but only the acceleration and the phase-space meth-

rithms. In particular, we need to assess the capability of eachods eliminate the two points between the spikes and the shallow

method to detect double-point spikes such as that shown in Fig. 1spike that follows the two deep spikes. In fact, for the phase-space

Table 2. Results of Applying Five Despiking Methods to Contaminated Data set with Optimum Parameters from Table 1INyMisekeimber
of Iterations

No. of Final

spike _ standard deviation Replacement
Despiking method Parameters events N (cmsY strategy
RC filters k=9 253 2 18.33 1 preceding
Tukey 53H k=15 689 3 14.04 1 preceding
Acceleration Na=15k=15 834 16 13.17 1 preceding
Wavelet Universal 213 2 14.33 Mean
Three-dimensional phase space Universal 194 4 13.78 Cubic fit
Original signal 23.52

aButterworth low-pass filter of fifth order with a frequency cutoff at 10% of the Nyquist frequency was(Asedymous 1995
bFive iterations for deceleration and five for acceleration.
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Fig. 5. Detection of typical multipoint spike everttight line) and its replacementheavy ling using various methods and parameters in
Table 2

method, the shallow spike is only detected on the second iterationthe replacement strategy of using the preceding point is used.
(Ph-Sp 2 in Fig. b and this causes a problem because the data These problems arise because of the length of the spike éent
from this spike are used in the first iteration to fit the cubic that is points and the proximity of the next evefthe next 2 points As

used for interpolating over the spike event. Thus, when the shal-mentioned earlier, this is a pathological case.

low spike is detected in the second iteration, the data used for Table 2 also lists the standard deviation of the final despiked
fitting the cubic for interpolation over this event are in fact the record in each case. These should be compared with the standard
data that were fitted in the previous iteration. This causes the deviation of the original signal of 23.52 cm’s Notice that the
small rise in velocity in the replaced points. A similar, but in this standard deviation from the acceleration method is less than that
case less severe, problem occurs in the acceleration method whefrom the phase-space method. The reason is that the acceleration
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Fig. 6. Two spikes that are detected and replaced by acceleration
method, but not by phase-space method

method has identified some points as spikes that may not be
spikes at all, such as are shown in Fig. 6. This illustrates a prob-
lem with the acceleration method that we have had difficulty re- -
solving, namely: how do we set the two parameters so as to elimi-
nate spikes, but not damage the good data?

Finally, in Fig. 7 we present the phase-space projections of the
despiked, contaminated record and in Fig. 8 we show the de-
spiked record itself. The difference between Fig. 7 and Fil) 4
for the data before despiking is remarkable. Whereas in Fig. 4
there are a large number of points outside the ellipsoid and the
histograms have secondary peaks, in Fig. 7 almost all the data lie 10"
within the ellipsoid. In the phase-space plot&fu; versusAu;,
the string of velocities well below the mean value and having zero
second derivatives corresponds to a single spike event similar in
appearance to that in Fig. 5, but comprising 26 points resulting
from the amalgamation of adjacent spike events. So, despiking
identifies these as spikes, but they cannot be improved because
their replacements would continue to be “spikes” in the next
iteration. Thus, while the despiking has cleaned the record signifi-
cantly, and the resulting time series looks perfectly satisfactory
(Fig. 8), there are remaining features that cannot be accommo-
dated. These are unlikely to cause problems in the calculation of
low-order statistical moments, but care must be exercised when
calculating high-order moments or mulitfractals from such data,
and as a matter of routine we would reject this record for that
reason.

A%u {cms

80 100 120 140 160 180yo° 10° 10*
u{cm s”) No of Events

No of Events
=

Discussion

The results show that the phase-space thresholding method works
extremely well and this has been confirmed by successful appli-
cation of the method to numerous ADV data sequences from ourFig. 7. Phase-space plots of despiked contaminated datausetber

data archive. Given that such data are neither indeperitey of spikes detected in last iteration are listed in top right corner of each
have statistically significant autocorrelations at=g nor nor- phase-space plpt

mally distributed(the tails of the frequency distribution decay

slower than normaland therefore violate the basic assumption in

the derivation of the Universal threshold, the question is: why

does it work so well? The answer is twofold. First, the velocity (e.g., over a tidal cycle or during a change in river flpthen the
spectrum at low frequencies approximates the white-noise spec{phase-space method would not work unless these long-scale fluc-
trum (Nikora and Goring 2000and therefore providing the data tuations were removed by high-pass filtering. Second, providing
sequence is long enough to encompass the maximum externathe data are approximately normal, the low-order moments, spe-
time scale of the application, the Universal threshold applies. If cifically the standard deviation, are adequate to describe the dis-
the data sequence were undergoing a sustained change in velocityribution.

No of Events
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Fig. 8. Contaminated record of Fig(l3 after cleaning using phase-space method and replacing each spike with cubic polynomial fitted to 12
points on either side of spike

Numerical experiments undertaken to test the Universal the one based on an acceleration criterion suffer from ambiguity
threshold revealed that the threshold is about 10% highnfor in what thresholds to choose and the fact that different records
>1,000. Initially, we thought this was either a problem with our may need different thresholds.
random number generator or that the number of samples was Spike replacement is an arbitrary procedure. There are many
insufficient to arrive at a valid result. Therefore, we undertook different strategies available and none of them has more validity
some tests on a massively parallel computer using the scalablethan any other. We have found that for ADV data with sampling
parallel random-number generatt8PRNG of Mascagni etal.  frequencies from 25 to 100 Hz, the best solution is to use 12
(1999 to generate uniformly distributed pseudorandom numbers points on either side of the spike to fit a third-order polynomial
and the well-known Box—Muller algorithniBox and Muller that is interpolated across the spike.

1958 to convert those into a normal distribution. For each num-
ber of datan we ran 1028 Monte Carlo simulations using 128
processors, thus generating’2 131,072 simulations for eaahn

The tests confirmed that the Universal threshold is 10% high. For
despiking, we believe this bias in the threshold is not really a
problem. After all, our data are only approximately normal in
their distribution. Nevertheless, it does mean that fewer spikes are
detected than if the Universal threshold were exact.

ADVs measure velocity along three beams, then convert these
to Cartesian coordinates using a matrix transformation. Therefore,
we would expect that a spike detected in one of the transformed
velocities would also occur in the others. However, our experi-
ence is that for a down-looking ADV, the vertical velocity has
many fewer spikes than the horizontal velocities. Therefore, our
procedure is to despike each velocity component separately, and
to record the number of spikes detected.
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Notation

Conclusions The following symbols are used in this paper
a,b = major and minor axes, respectively, of projec-

In this note we have presented several different techniques for tion of ellipsoid on plane of\?u; Versusu
detecting and replacing spikes in ADV data sequences. Single- a; = discrete acceleration using backward differ-
point spikes that protrude above or below the surrounding data ences;
are easily detected and replaced. However, multipoint spikes and dy; = first wavelet coefficient ofi; ;
spikes that blend with the background are much more difficult to dy; = first wavelet coefficient of spikedl=a
detect. Of the methods considered, the phase-space thresholding spike, O otherwise
method is the most suitable for detecting spikes in these data. The E(..) = expected value of;
method is new, but comprises a combination of three concepts g = acceleration of gravity;
that are not new:(1l) that differentiation enhances the high- k = standard deviation threshold;
frequency components of a signé?) that the expected maximum n = number of data;
of a sequence of random numbers is given by the Universal t = time;
thresholdy/2 Inne, and(3) that good data cluster in a dense cloud U(w,t) = Fourier series ofi(t);
in three-dimensional phase space. It is also the most robust be- u(t) = velocity time series;
cause it requires no external parameters. Other methods such as u; = discrete velocity time series;
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