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Seismic Vulnerability of Old Masonry Buildings –
SEVERES Project

I. NUMERICAL MODELING

Experimental tests provide values for mechanical pa-
rameters, but those values cannot be directly used in
numerical modeling. A calibration process should be
done in order to validate the values adopted for the
mechanical parameters as well as the numerical models.
This calibration process is extremely important when
nonlinear material behavior is to be simulated, which
is the case of seismic structural studies on old masonry
buildings [2].

There is little information about old masonry buildings
mechanical parameters, but even less with regard to its
use in numerical models. In the present work two types
of numerical models were built to simulate the diagonal
compression tests described in report 1: nonlinear finite
element models [3] and distinct element models [4].

In the finite element models the cracking of masonry
(the most important source of non-linear behavior) was
simulated by a smeared crack approach. In the case
of rubble stone masonry walls, where the location of
potential cracks cannot be defined in advance, a smeared
model seems to be preferable and more applicable for
engineering practice than a distinct crack approach.
However, it should be noticed that when the complete
material degradation is to be modeled, smeared crack
models are more unstable than distinct crack models.

The distinct elements method was primary developed
for rock mechanics, but its numerical robustness and its
properties, namely in the simulation of the interaction
between elements (or blocks), make the method very
attractive for modeling masonry structures. The distinct
element method allows the explicit modeling of stones
and mortar joints, with displacements and rotations of the
individual blocks, and, thus, the simulation of masonry
walls failure mechanisms. The use of Voronoi algorithm
[5] for elements (blocks) generation allowed reproducing
the arbitrary stone arrangements in the masonry spec-
imens and made possible the use of distinct element
method for rubble stone masonry specimens.

Fig. 1. Finite element model mesh.

II. DIAGONAL COMPRESSION TESTS

A. Nonlinear Finite Element Model

The adopted methodology for modeling the masonry
specimens by the finite element method required the use
of nonlinear models to simulate the masonry non tension
resistance. A smeared crack model (Total Strain Crack
Model [3]) based on a fixed stress-strain concept was
used. In this model the stress-strain relations are eval-
uated in a fixed coordinate system which is fixed upon
cracking. In others words, the crack orientation is kept
constant during the whole computation process, which is
physically realistic in the current case of study. Nonlinear
geometric effects were not considered in the numerical
simulations and eight-node isoparametric plane stress
elements were used in the mesh generation (Figure 1).

The smeared crack models are defined through the
combination of three factors: 1) a tension cut-off fail-
ure criterion (constant or linear), 2) the shear transfer
through the crack (total, constant or variable shear re-
tention) and 3) the material softening behavior (brittle,
linear, multilinear or non-linear). In the present work a
constant tension cut-off criteria was used together with
an exponential constitutive law for the softening behav-
ior. For the shear behavior it was adopted a constant
shear retention (where the shear stiffness was reduced
in the crack surface by 1% after cracking) and for the
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compressive behavior an elastic linear constitutive law
was used.

The finite elements mechanical properties for both
type of specimens, namely the density ρ, Young modulus
E, Poissons ratio ν, tensile strength ft, fracture energy
Gf1 and shear retention factor β, are presented in Table I.
For density, Poissons ratio and fracture energy typical
values adopted in other numerical works [[6], [7], [8],
[9]] were considered.

For the shear retention factor, a parameter associated
with the shear transference across cracks, the used value
was obtained by calibration of the experimental and
numerical results. The adopted value (β=0.1) is a current
value used in the simulation of the cracked plain concrete
behavior, but slightly bigger than the value used by
Rots et. al. [7] and [8]. However the adopted value
is coherent with the experimental evidence where the
stones interlock allow a important shear transference
after crack occurrence.

The Young modulus and tensile strength were also
quantified by calibration of the numerical and experi-
mental results. With those results, which are not far from
the typical values, a good match was obtained.

The vertical load was applied monotonically at the
top of the specimen, as in the experiments, and a
displacement controlled procedure was applied to impose
the load up to failure, using the regular Newton-Raphson
iteration procedure.

Considering the results obtained with the finite el-
ement method, that can be seen on Figure 2 and 3,
an acceptable matching between numerical and exper-
imental values for both the ultimate load and the initial
loading branch are obtained. The damages observed in
the numerical model are also coherent with the observed
collapse during the experimental tests, as can be seen
in Figures 5(a) and 5(b) for hydraulic lime mortar and
Figure 6(a) and 6(b) for air lime mortar. Figure 2 and
3 also show the ultimate load obtained by the distinct
element method referred later in the following part.

B. Distinct Element Model

As mentioned, the distinct element models of the
masonry specimens consisted in a group of randomly
sized polygonal blocks generated by an automatic joint
generator (Figure 4). Each block simulates a stone and
was modeled by a finite difference elements mesh (Fig-
ure 4) with linear elastic behavior (bulk modulus K and
shear modulus G). In addition, an appropriate behavior
was assigned to the contacts between the blocks using
a Coulomb slip model. The parameters that control the
contact behavior are the normal stiffness (Jkn), the shear
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Fig. 2. Numerical and experimental results: Force vs. Vertical
displacement diagram for wall W4.
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Fig. 3. Numerical and experimental results: Force vs. Vertical
displacement diagram for wall W2.

Fig. 4. Randomly sized polygonal blocks.
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TABLE I
MECHANICAL PROPERTIES FOR NUMERICAL ANALYSIS WITH FINITE ELEMENT METHOD

Masonry specimen Density Young modulus Poisson’s ratio Tensile strength Fracture energy Shear retention factor
ρ [kg/m3] E [GPa] ν ft [MPa] Gf1 [N/m] β

Hydraulic lime specimen 1835 3.27 0.20 0.15 100 0.1

Air lime specimen 1835 3.27 0.20 0.01 100 0.1

(a) (b) (c)

Fig. 5. Experimental and numerical failure modes: (a) Experimental; (b) Finite element model; (c) Distinct element model (the picture
shows the wall immediately before the complete collapse)

(a) (b) (c)

Fig. 6. Experimental and numerical failure modes: (a) Experimental; (b) Finite element model; (c) Distinct element model (the picture
shows the wall immediately before the complete collapse)

stiffness (Jks), the friction angle (φ), the cohesion (c)
and the tensile strength (ft). The joint deformability
parameters (Jkn and Jks) control the initial loading
branch and the joint strength parameters (φ, c and ft)
control the ultimate force level. The normal and shear
stiffness are used to model the deformability of the
mortar and blocks in the vicinity of the contact joint.
Table II presents the adopted values for these parameters
for the two cases: air lime mortar and hydraulic lime
mortar specimens. Those values were quantified based
on values adopted in other works [[9], [10], [11], [12]]
and the calibration of the numerical and experimental
results.

The numerical results obtained with the distinct ele-
ment model for specimens made with hydraulic and air

Fig. 7. Main crack obtained by the distinct element model - Wall
W4.
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TABLE II
MECHANICAL PROPERTIES FOR NUMERICAL ANALYSIS WITH DISTINCT ELEMENT MODEL

Masonry specimen Bulk modulus Shear modulus Normal stiffness Shear stiffness Friction angle Cohesion Tensile strength
K [MPa] G [MPa] Jkn [GPa] Jks [GPa] φ [◦] c [MPa] ft [MPa]

W4 410 450 17 17 45 0.23 0.23

W2 410 450 8 8 45 0.03 0.03

lime mortar can be seen in Figure 2 and 3, respectively,
and the corresponding collapse mode for both type of
mortar is depicted in Figure 5(c) and 6(c), respectively.
In Figure 7 is depicted the main crack obtained on the
distinct element simulations, which is similar to the crack
observed in the experimental tests. As it can be seen in
those figures a good matching between numerical and
experimental values was achieved for the ultimate load
and for the collapse pattern.

C. Discussion

A general overview of the results obtained in numer-
ical analysis was presented, where force displacement
diagrams and failure modes were some of the aspects
under analysis. An acceptable matching between numer-
ical and experimental results for the ultimate load and
collapse modes can be noted for both, finite element
and distinct element models. As shown in Figure 5, 6
and 7, the obtained crack patterns (diagonal cracking)
in the numerical models were quite similar to ones
obtained in the experimental tests (Report 2). A good
agreement with experimental results was also obtained
in the finite element analysis for the initial branch of the
load-displacement curve. In the distinct element analysis
this curve cannot be obtained, at least not directly, which
represents a clear advantage of the finite element method.
However, modeling with finite element models was much
more demanding in the sense that the numerical conver-
gence required a continuous review of the convergence
criteria. Since the location of the potential cracks are
unknown in rubble stone masonry, the smeared crack
approach is more appropriate for modeling large rubble
stone masonry panels than the distinct crack approach
or the distinct element method. However, the use of the
Voronoi algorithm to randomly generate the blocks in
the distinct element model allows the use of a distinct
methodology in a smeared sense.

III. TRIPLET TESTS

As for diagonal compression tests, two types of nu-
merical models were used to simulate the triplet tests,
namely a non-linear finite element model [3] and a
distinct element model [4]. Both models are able to

Fig. 8. Finite element model mesh.

simulate the masonry non-linear behavior, namely its
shear strength and the reduced tensile strength.

In the finite element model a discrete approach was
adopted. The three stone layers were modeled by nine-
node continuum plane stress elements, while the mortar
bed joints were simulated by six-node zero-thickness
line interface elements. For the continuum elements a
linear elastic behavior was adopted, being the non-linear
behavior concentrated in the interface elements. The
material model adopted for the interfaces was the multi-
surface interface model proposed by Lourenço and Rots
[13].

As already mention, the distinct element method al-
lows the explicit modeling of stones and joints, with dis-
placement and rotations of the individual blocks. In the
experimental tests modeling each stone layer was model
by an individual block, with linear elastic behavior (by
triangular finite differences elements). As in the previous
model, the non-linear behavior was concentrated in the
joints, in this case by means of non-linear contacts.

A. Nonlinear Finite Element Model

The multi-surface interface model proposed by
Lourenço and Rots [13] is appropriate to simulate frac-
ture, frictional slip as well as crushing along interfaces.
The model assumes that the stone units behave in an
elastic regime, while inelastic behavior is concentrated
in the joints [3]. As mention, in the finite element
model the stone layers were modeled using nine-node
continuum plane stress elements, while the horizontal
joints were represented by six-node zero-thickness line
interface elements (Figure 8).

For the finite element model it was adopted the shear
strength parameters obtained by the experimental tests



8

(a) (b) (c)

Fig. 9. Experimental and numerical failure modes: (a) Experimental; (b) Finite element model; (c) Distinct element model

(a) (b) (c)

Fig. 10. Experimental and numerical failure modes: (a) Experimental; (b) Finite element model; (c) Distinct element model

(i.e. coefficient of friction (tanφ ) and cohesion (c )), as
well as, the young modulus obtained experimentally for
the vertical deformation of the stone layers. It must be
mention that the for hydraulic lime and air lime mortar
specimens it was found similar values for the young
modulus, which means that the stones were in contact
and the mortar hadnt an important influence in the de-
formability, at least in an early stage of vertical loading.
The other interface parameters, like normal stiffness kn,
shear stiffness ks, tensile strength ft , fracture energies
for Mode I (G(fI)) and Mode II (G(fII)), compressive
fracture energy (G(fc)), dilatancy coefficient tanψ, and
compressive strength fc , were defined based on other
works [[14], [15], [10] ] and by trial and error, trying to
adjust the numerical results to the experimental curves.
Table III and Table IV summarize the elastic and inelastic
parameters adopted for finite element models.

The boundary conditions and the load application
were defined according to the experimental arrangement.
Firstly the vertical load was applied in the upper surface
and then the horizontal load was applied increasingly, till
the specimen’s collapse. The horizontal displacement of
the right surfaces of the upper and lower stone layers
were restricted, as happened in the experimental test. As
can be seen in Figure 11 and Figure 12 the results ob-
tained with the finite element method shows a reasonable
matching between numerical and experimental values for
both the ultimate load and the initial loading branch
(Figure 11 and Figure 12 also show the ultimate load
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Fig. 11. Numerical and experimental results: Force vs. Horizontal
displacement diagram for wall T3.

obtained by the distinct element method, referred later
in the following part). Concerning the failure mode, the
numerical models agreed reasonably well with the ex-
perimental evidence, as it can be noticed in Figures 9(a)
and 9(b) for hydraulic mortar and Figure 10(a) and 10(b)
for air lime mortar.

B. Distinct Element Model

The distinct element model (Figure 13) consisted in
a group of three blocks (each one simulating a stone
layer and modeled by a finite difference elements mesh)
with non-linear contacts between those block elements.
For the finite difference triangular element mesh with
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TABLE III
ELASTIC PROPERTIES FOR THE CONTINUUM AND INTERFACE ELEMENTS

Mortar
Unit Joint

E ν kn ks

[GPa] [N/mm3] [N/mm3]

Hydraulic 1.0 0.15 0.3 0.3

Air lime 1.0 0.15 0.07 0.07

TABLE IV
INELASTIC PROPERTIES FOR INTERFACE ELEMENTS

Specimens
Tension Shear Compression

ft GfI c tanφ tanψ GfII fc Gfc

[MPa] [N/mm] [MPa] [N/mm] [GPa] [N/mm]

T3 0.1 0.1 0.2 1.23 0.001 0.5 5.0 5.0

T8 0.01 0.1 0.09 0.6 0.001 0.5 3.0 5.0
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Fig. 12. Numerical and experimental results: Force vs. Horizontal
displacement diagram for wall T8.

Fig. 13. Finite element triangular mesh.

linear elastic behavior it was adopted for the two types
of specimens (hydraulic and air lime mortars) a bulk
modulus (K) of 480 MPa and a shear modulus (G) of
430 MPa, which were obtained by a Young modulus (E)
of 1 GPa and a Poissons coeficent (ν ) of 0.15.

An appropriate behavior was assigned for the contacts
between blocks by a Coulomb slip model with residual

strength. The mechanical parameters of the mentioned
contact model are the normal stiffness (Jkn), the shear
stiffness (Jks), the friction angle (φ), the residual friction
angle (φres) the cohesion (c), the residual cohesion
(cres) and the tensile strength (ft) and the correspond-
ing parameters for the residual strength. The joint de-
formability parameters (Jkn and Jks) control the initial
loading branch and the joint strength parameters (φ, c
and ft) control the ultimate force level. Those values
were quantified considering the values obtained in the
experimental tests (as in the finite element models) and
by trial and error, trying to adjust the numerical and the
experimental force-displacement curves. However, the
trial and error procedure was based on values adopted in
other works [[11], [16], [10]]. For the residual strength
after the beginning of sliding, a degradation of 40%
was estimated, based on the numerical and experimental
results adjustment.Table V shows the adopted values for
the contacts and blocks mechanical parameters.

As it can be seen in Figure 11 and Figure 12, for both
type of wall specimens (hydraulic and air lime mortar)
a good matching for the ultimate load was reached by
the distinct element method. In the mentioned figures
is presented only the maximum load obtained by the
distinct element method, since for the software used the
force-displacement curve can not be obtained, at least
directly. Further developments should be done in the
present work in order to obtain those curves. Finally, it
worth mention that the models presented a failure pattern
similar to the experimental one (Figure 9(c) and 10(c)).

C. Discussion

As can be noticed, the numerical models (finite el-
ement and distinct element models), showed a good
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TABLE V
MECHANICAL PROPERTIES ADOPTED FOR THE DISTINCT ELEMENT MODEL

Masonry Bulk Shear Normal Shear Friction Residual friction Cohesion Residual Tensile
specimen modulus modulus stiffness stiffness angle angle cohesion strength

K [MPa] G [MPa] Jkn [N/mm3] Jks [N/mm3] φ [◦] φres [◦] c [MPa] cres [MPa] ft [MPa]

T3 480 430 0.3 0.3 50 20 0.2 0.08 0.1

T8 480 430 0.07 0.07 30 12 0.09 0.036 0.01

matching between numerical and experimental results for
the ultimate load and collapse modes. As can be seen in
Figure 9 and 10 the obtained failure patterns (sliding)
in the numerical models were quite similar to ones seen
on the experimental tests. In the finite element analysis
a good agreement with the experimental results was
obtained for the initial branch of the ”load-displacement”
curve, which indicates that the elastic parameters were
well estimated. Regarding the simulation of shear be-
havior after the maximum load, which required very
small loading steps to get convergence in all steps, a
good agreement was also obtained. That agreement was
obtained mainly due to the values adopted for the Mode
I and Mode II fracture energies, since the compressive
strength and corresponding fracture energy were not
relevant. The effect of dilatancy was not considered
in the present finite element simulation, which requires
further developments to understand its influence in the
shear strength. In the distinct element analysis the force-
displacement curve cannot be directly obtained, which
represents an advantage of the finite element method.
However, modeling with finite element models was
much more demanding in the sense that the numer-
ical convergence required a continuous review of the
convergence criteria. For the contact behavior after the
sliding, a residual strength of 40% was considered. That
assumption, which as a similar effect to the fractures
energies considered in the finite element models, must be
confirmed in further developments of the present study
by the complete force-displacement curve. Also in the
distinct element model the effect of the dilatancy should
be study in further developments of the present study.
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