Gonçalo Correia Lopes

Presentation summary

- I. Motivation, Research questions and Methodology Mixed URM-RC building typologies
- II. Development of the BIM-based methodology Expeditious modelling and analysis framework
- III. Seismic performance assessment of existing URM-RC buildings Case studies
- IV. Contributions

I. Motivation, Research questions and Methodology

Mixed URM-RC building typologies

Mixed URM-RC building typologies

Research questions

- Is the utilization of Reinforced Concrete (RC) a suitable approach for the seismic strengthening of old masonry buildings?
- How vulnerable are current mixed URM-RC buildings to earthquakes?
- Which numerical modelling and analysis methods can tackle the different complex aspects related to these typologies?

Motivation / Goals

Faster numerical analysis

Robustness and accuracy of the 3D models

Automation of processes (numerical modelling and analysis, and results)

Convenience in engineering practice

Research methodology (from BIM to FEM/EFM)

Advanced numerical modelling

- Finite Element Models (FEM)
- 2D shell elements
- More time-consuming
- Higher accuracy

Software: DIANA FEA

Simplified numerical modelling

- Equivalent Frame Models (EFM)
- 1D bar elements
- Faster
- Reasonable accuracy

Software: SAP2000

II. Development of the BIM-based methodology

Expeditious modelling and analysis framework

EFM – Criteria for the individuation of the macroelements

Definition of non-linear behaviour: plasticity models

Definition of non-linear behaviour: plasticity models

Definition of non-linear behaviour: plasticity models

In-plane plastic hinges

u<u>uuuu</u>u

mann

(IIIIIIII)

mmm

ummn.

mmin

			Resistance levels					Deformation capacities		
Failure mechanisms		e mechanisms	Max. shear strength	Eq.	Reduced shear force	Residual strength	Yield drift	Ultimate drift	2 nd ultimate drift	
			V _{max}		V_{red}	V_{res}	$\theta_y = \theta_{DL}$	$\theta_u = \theta_{SD}$	$\theta_{u2} = \theta_{NC}$	
			B-C		D	Е	В	С	D	
	Piers	of irregular masonry	$V_c = \frac{DN}{E1 - \frac{N}{E1 - N}{E1 - \frac{N}{E1 - \frac{N}{E1 - \frac{N}{E1 - \frac{N}{E1 - N}{E1 - N$	(1)	0.8 <i>V</i> _f	- Idem	θ_{cr}	$0.01\underline{F}1 - \frac{N}{Dtf^{\underline{e}}}$		
_		of regular masonry	$2H_0$ κfDt	(')	0.9 <i>V</i> _f				_	
Hexural rocking	s	coupled with tensile resisting elements (e.g.: lintel)	$V_{f,S} = \frac{SN_S}{2l_{S,0}} E 1 - \frac{N_S}{\kappa f S t_S}$	(2)	0.9 <i>V</i> _f	ldem		0.016	$-\frac{4}{3}\theta_{f,u}$	
	Spandre	not confined failing through units	$V_{f,S} = 1.15 \frac{s^2 t_S}{3 \times 2 l_{S,0}} f_t$	(3)	0.81/	Idom	0.002	0.012		
		not confined failing along the joints	$V_{f,S} = \frac{{}_{S}{}^{2}t_{S}}{2l_{S,0}\&I + f_{t}/f'}f_{t}$	(4)	0.07 f	luem				
		of irregular masonry	$V_d = \frac{Dt}{b} f_{t^2} \cdot \overline{1 + \frac{N}{Dtf_t}}$	(5)	0.3 <i>V</i> _d	0		0.005		
ğ	Piers	of regular masonry	$V_{d} = \frac{Dt}{b} \not\in f_{v0} + \mu \bigvee_{Dt}^{N} \not\in$	(6)	_		θ_{cr}		_	
Diagonal crackin		of regular masonry failing through units	$V_{d,lim} = \frac{Dt}{b} \frac{f_{bt}}{2.3^{\frac{1}{2}}} \overline{1 + \frac{N}{Dtf_{bt}}}$	(7)	0.5 <i>V</i> _d	0.2 <i>V</i> _d		0.006	$\frac{4}{3} heta_{d,u}$	
	drels	of irregular masonry	$V_{d,S} = \frac{s t_S}{b} f_t \dot{P}_{\vec{s}} \overline{1 + \frac{N_S}{f_t \ s t_S}} \dot{p}$	(8)	steel/RC: 0.6V _d		0.001	0.005		
	Span	of regular masonry (pre- modern)	$V_{d,S} = \frac{s t_S}{b} E f_{v0} \breve{E} + \mu \sqrt{\frac{N_S}{s t_S}} \breve{E} e$	(9)	ineffective: $0.1V_d$	idem	0.001	0.006		
iding	s	of regular masonry	$V_{s} = \frac{N \&f_{v0} D t + 2\mu N'}{2 \&N + 3 f_{v0} \alpha H t'}$	(10)		ldem		0.008		
Shear sli	Pier:	of regular masonry failing through units	$V_{s,lim} = \frac{0.195 f_b D t N}{28 N + 0.195 f_b \alpha H t'}$	(11)	$\mu N = 0.4N$	0.5V _{s,lim}	θ_{cr}	0.005	$-\frac{4}{3}\theta_{s,u}$	

Α

14

Out-of-plane performance of URM walls

[1] T.M. Ferreira, A.A. Costa, R. Vicente, H. Varum, A simplified four-branch model for the analytical study of the out-of-plane performance of regular stone URM walls, Eng. Struct. 83 (2015) 140–153. doi:10.1016/j.engstruct.2014.10.048.

Out-of-plane failure mechanisms of URM walls

Simplified failure mechanisms for walls with returns

Out-of-plane plastic hinges

θ

$$M_{\max} = \boldsymbol{M_0} \cdot \boldsymbol{\xi}$$

State of degradation at cracked joint	$\Delta_1 / \Delta_u \theta$	$_{1} = \theta_{u} \Delta_{1} / \Delta_{u}$	$\Delta_2 / \Delta_u \theta$	$\theta_2 = \theta_u \Delta_2 / \Delta_u \xi$	= $(\theta_u - \theta_2)/\theta_u$
New	0.06	0.04 <i>t/</i> H	0.28	0.19 <i>t/</i> H	0.715
Moderate degraded	0.13	0.09 <i>t</i> / H	0.40	0.27 <i>t</i> / H	0.595
Severe degraded	0.20	0.13 <i>t/</i> H	0.50	0.33 <i>t/</i> H	0.505

Mechanism	Condition	Uniform distribution	Triangular distribution	Eq.
K1x top hinge	$\frac{D}{H} \ge n_r$	$M_{0,top} = \frac{3D N_{top} t}{6D - 2n_r H}$	$M_{0,\text{top}} = \frac{D N_{top} t}{2D - n_r H}$	(1)
K1x bottom hinge	$\frac{D}{H} \ge n_r$	$M_{0,\text{bot}} = \frac{3D \ t \ \bar{y}N_{top} + W \bar{y}}{6D - 4n_r H}$	$M_{0,\text{bot}} = \frac{2D \ t \ \bar{y}N_{top} + W \bar{y}}{4D - 3n_r \ H}$	(2)
K1y bottom hinge	$\frac{D}{H} < n_r$	$M_{0,\text{bot}} = \frac{3H^2 n_r^2 t \bar{y} N_{top} + W \bar{y}}{2D^2}$	$M_{0,\text{bot}} = \frac{2H^3 n_r^3 t \bar{y} N_{top} + W \bar{y}}{5D^3}$	(3)
K2x middle hinge	$\frac{D}{H} \ge \frac{n_r}{2}$	$M_{0,\text{mid}} = \frac{3D \ t \ (2N_{top} + W)}{12D - 2n_r \ H}$	$M_{0,\text{mid}} = \frac{D \ t \ (2N_{top} + W)}{4D - n_r \ H}$	(4)

III. Seismic performance assessment of existing URM-RC buildings

Case studies

Validation strategy of the seismic assessment methodology

Comparison amongst different types of:

- Building geometries (pier H/D ratio, opening ratio, number of storeys)
- Material properties
- Analysis methods (experimental and numerical), based on:
 - Damage observation (damage patterns, failure modes and severity of cracking)
 - Modal analysis (modal shapes, frequencies)
 - Pushover analysis (target displacement, stiffness, capacity)

Case-study buildings

2-storey prototype building Building 1 (EUCENTRE experimental (B1) campaign) (Penna 2015)

Building 2 (B2) 3-storey limestone Portuguese building (Lovon et al. 2021)

Building 3 (B3) 5-storey Portuguese "Gaioleiro" building (Simões et al. 2013)

E,W

Y

 $\leftarrow >$

N,S

 \boxtimes

X

1.01 1.02 0.81 1.02 0.81 1.02 1.02

6.70 N,S

X

2.84

8

300

325

245

3.05

w

Construction of the numerical models (FEM and EFM)

٠

•

FD

Excel I: Model definition •

- Joint Coordinates
- Connectivity Frame
- Frame Section Assignments
- Frame Props 01 General
- Joint Restraint Assignments
- Connectivity Area
- Frame Local Axes 1 Typical
- Frame Offset (Length) Assigns
- Frame Insertion Point
 Assigns
- MatProp 01 General
- MatProp 02 Basic Mech
 Program Control Props
- Area Section Assignments
- Area Section Properties

- Area Section Property
- Layers
- Area Auto Mesh Assignments
- Load Case Definitions
- Load Pattern Definitions
- Auto Seismic Eurocode8 2004
- Case Modal 1 General
 Case Static 1 Load
- Assigns

 Case Static 2 NL Load
- AppCase Static 4 NL
- Parameters

 Case Static 7 Add Con
- Disps
 - ontrol
- Hinges Def 05 Non Fcontrol
 Hinges Def 02 - Non - DC – Gen

Excel II: Static forces

Element Forces – Frames

Excel III: Hinge definition

Hinges Def 03 - Non - DC -

Base Reactions

Program Control

- Hinge Ass 02 User Prop
- Hinge Ass 09 Hinge
 Overwrites
- Program Control

Eigenmode analysis – fundamental modes of vibration and frequencies

	Buil	ding 1	Bui	lding 2	Bui		
	FEM	EFM	FEM	₽₽M	FEM	EFM	
udinal					Second Se		Mode type
Longit				M TA			Longitudinal O Transverse (> B1 Torsional B1 Longitudinal
						×11	S Transverse (> Torsional
Fransverse		T					O Transverse (\ B2 <u>Torsional</u> Longitudinal
							S Transverse (\ Torsional
							O Transverse (Y B3 Torsional
orsional							S Transverse (Y Torsional
F							

			Fem (C	DIANA)		, FEM,				
	Mode type		Mada Na	Freq. [Hz]	Mode No.		Modal participating ratios			ÇI- ⊞M ^Ç
			would no.			rreq. [riz]	UX	UY	UZ	Δf (%)
		Longitudinal (Y)	1	5.55	1	5.05	0.25	0.57	0.00	-9.9%
	0	Transverse (X)	2	6.03	2	5.28	0.61	0.30	0.00	-14.2%
D1		Torsional	3	8.56	3	7.84	0.05	0.04	0.00	-9.2%
ы		Longitudinal (Y)	1	5.76	2	5.32	0.30	0.62	0.00	-8.3%
	S	Transverse (X)	2	5.88	1	5.08	0.57	0.27	0.00	-15.7%
		Torsional	3	9.21	3	7.71	0.04	0.03	0.00	-19.5%
(Longitudinal (X)	16	3.04	10	2.73	0.97	0.00	0.00	-11.4%
	0	Transverse (Y)	-	-	-	-	-	-	-	-
B 2		Torsional	-	-	-	-	-	-	-	-
DZ		Longitudinal (X)	1	2.953	1	3.10	0.94	0.00	0.00	4.7%
	S	Transverse (Y)	2	6.100	2	5.85	0.00	0.84	0.00	-4.3%
		Torsional	3	7.459	3	7.04	0.00	0.00	0.00	-6.0%
		Longitudinal (X)	1	1.60	1	1.67	0.78	0.00	0.00	4.2%
С В3— S	0	Transverse (Y)	-	-	-	-				-
		Torsional	2	2.89	2	2.92	0.00	0.02	0.00	1.0%
		Longitudinal (X)	1	1.76	1	1.79	0.81	0.00	0.00	1.5%
	S	Transverse (Y)	3	3.41	3	3.13	0.00	0.79	0.00	-8.8%
		Torsional	2	2.88	2	2.89	0.00	0.05	0.00	-0.3%

Pushover analysis – damage patterns and failure mechanisms

Pushover analysis – validation against experimental results

Building 1 (B1) 2-storey prototype building (EUCENTRE experimental campaign) (Penna 2015)

Pushover analysis – validation against experimental results

Considered load patterns:

- Uniform pattern, with an equivalent acceleration proportional to the mass distribution;
- **Modal pattern in all directions**, proportional to the first fundamental global mode shape, with the greater modal participating ratio in the analysis direction;
- Modal pattern only in the analysis direction, which corresponds to the previous load pattern, but neglecting the component of the load in the perpendicular direction of the pushover.

Pushover analysis – validation against experimental results

Considered load patterns:

- Uniform pattern, with an equivalent acceleration proportional to the mass distribution;
- Modal pattern in all directions, proportional to the first fundamental global mode shape, with the greater modal participating ratio in the analysis direction;
- Modal pattern only in the analysis direction, which corresponds to the previous load pattern, but neglecting the component of the load in the perpendicular direction of the pushover.

Pushover analysis – comparison FEM vs EFM

	Original configuration	Strengthened configuration
Wilding 2		
Building 3		

Pushover analysis – comparison FEM vs EFM

Considered load patterns:

- Uniform pattern, with an equivalent acceleration proportional to the mass distribution;
- **Modal pattern in all directions**, proportional to the first fundamental global mode shape, with the greater modal participating ratio in the analysis direction;
- Modal pattern only in the analysis direction, which corresponds to the previous load pattern, but neglecting the component of the load in the perpendicular direction of the pushover.

Pushover analysis – comparison FEM vs EFM

Considered load patterns:

- Uniform pattern, with an equivalent acceleration proportional to the mass distribution;
- Modal pattern in all directions, proportional to the first fundamental global mode shape, with the greater modal participating ratio in the analysis direction:
- Modal pattern only in the • analysis direction, which corresponds to the previous load pattern, but neglecting the component of the load in the perpendicular direction of the pushover.

0.080

0.070

0.030

Parametric study of the seismic performance of URM-RC structures

- A. Influence of linear material properties
- B. Influence of the ultimate flexural drift limit
- C. Influence of the out-of-plane resistance
- D. Influence of the strengthening intervention

A. Influence of linear material properties

- f = 0.5, **1**. **0** and 2.0 MPa (with compressive fracture energy $G_{f_c} = f \times 1.6$ mm for the FEM);
- $f_t = 0.025$, 0.05 and 0.1 MPa (with tensile fracture energy $G_{f_t} = f_t \times 0.001$ for the FEM);
- *E* = 800, 900 and 1000 MPa.

A. Influence of linear material properties

- f = 0.5, 1.0 and 2.0 MPa (with compressive fracture energy $G_{f_c} = f \times 1.6$ mm for the FEM);
- $f_t = 0.025$, 0.05 and 0.1 MPa (with tensile fracture energy $G_{f_t} = f_t \times 0.001$ for the FEM);
- *E* = 800, 900 and 1000 MPa.

A. Influence of linear material properties

- f = 0.5, 1.0 and 2.0 MPa (with compressive fracture energy $G_{f_c} = f \times 1.6$ mm for the FEM);
- $f_t = 0.025$, 0.05 and 0.1 MPa (with tensile fracture energy $G_{f_t} = f_t \times 0.001$ for the FEM);
- *E* = 800, 900 and 1000 MPa.

B. Influence of the ultimate flexural drift limit

Considered cases:

- According to the actual version of EC8-3 (CEN 2005):
- According to the expected future version of EC8-3 (CEN 2022): $\theta_u = 0.01(1 \sigma_0/f);$
- According to the "Modified SIA-model" (Salmanpour et al. 2015):
- According to the Italian code (NTC 2008):
- Proposed calibrated value (based on the "Modified SIA-model"):

Original configuration

Strengthened configuration

B. Influence of the ultimate flexural drift limit

- According to the actual version of EC8-3 (CEN 2005):
- According to the expected future version of EC8-3 (CEN 2022):
- According to the "Modified SIA-model" (Salmanpour et al. 2015):
- According to the Italian code (NTC 2008):
- Proposed calibrated value (based on the "Modified SIA-model"):

Β. Influence of the ultimate flexural drift limit

Considered cases:

600

500

400

300 200

100

0.000

0.005

F [kN]

- According to the actual version of EC8-3 (CEN 2005):
- According to the expected future version of EC8-3 (CEN 2022):
- According to the "Modified SIA-model" (Salmanpour et al. 2015): ٠
- According to the Italian code (NTC 2008): •

0.010

----- Orig. FEM (DIANA) (+X) Modal only X

Proposed calibrated value (based on the "Modified SIA-model"): •

> 0.015 d [m]

 $\theta_{\mu} = 0.008 \alpha H/D;$

 $\theta_{u} = 0.01(1 - \sigma_{0}/f);$

М

M_{max}

 θ_{μ}

 θ_{u2}

0.030

θ

B. Influence of the ultimate flexural drift limit

- According to the actual version of EC8-3 (CEN 2005):
- According to the expected future version of EC8-3 (CEN 2022):
- According to the "Modified SIA-model" (Salmanpour et al. 2015):
- According to the Italian code (NTC 2008):
- Proposed calibrated value (based on the "Modified SIA-model"):

B. Influence of the ultimate flexural drift limit

Considered cases:

600

500

400

300 200

100

0.000

0.005

F [kN]

- According to the actual version of EC8-3 (CEN 2005):
- According to the expected future version of EC8-3 (CEN 2022):
- According to the "Modified SIA-model" (Salmanpour et al. 2015):
- According to the Italian code (NTC 2008):

0.010

• Proposed calibrated value (based on the "Modified SIA-model"):

0.020

0.025

0.015

d [m]

Orig. EFM (SAP2000) (+X) Modal only Xδu=0.01(1-σ0/f)

Orig. FEM (DIANA) (+X) Modal only X Orig. EFM (SAP2000) (+X) Modal only Xδu=0.008αH/D

Orig. EFM (SAP2000) (+X) Modal only Xδu=0.01(1-004)
 Orig. EFM (SAP2000) (+X) Modal only Xδu=0.008α(1-σ04)
 Orig. EFM (SAP2000) (+X) Modal only Xδu=0.011α(1-σ04)

Original configuration

0.030

C. Influence of the out-of-plane resistance

- Piers without OOP hinges;
- Piers with OOP hinges neglecting the return walls;
- Piers with OOP hinges considering the return walls (proposed default configuration

C. Influence of the out-of-plane resistance

Considered cases:

- Piers without OOP hinges;
- · Piers with OOP hinges neglecting the return walls;
- Piers with OOP hinges considering the return walls (proposed default configuration).

700

Strengthened configuration

C. Influence of the out-of-plane resistance

- Piers without OOP hinges;
- Piers with OOP hinges neglecting the return walls;
- Piers with OOP hinges considering the return walls (proposed default configuration).

D. Influence of the strengthening intervention

Considered cases:

- Timber diaphragms (original configuration);
- RC slabs (strengthened configuration).

Considered load patterns:

- Uniform pattern
- Modal pattern in all directions
- Modal pattern only in the analysis direction

D. Influence of the strengthening intervention

Considered cases:

- Timber diaphragms (original configuration);
- RC slabs (strengthened configuration).

Considered load patterns:

- Uniform pattern
- Modal pattern in all directions
- Modal pattern only in the analysis direction

IV. Contributions

Contributions

Speed of the analysis: EFM vs FEM

Robustness of the model creation plug-in

• Able to handle irregular opening layouts and complex 3D structures

Automation and simplification of processes

• Modelling, analysis, and results

Convenience in engineering practice

- Easy to be implemented in practice-oriented commercial software
- Consistent with the recommendations of several seismic codes (namely the EC8-Part 3)
- Integrated multidisciplinary workflow:

Architect – Engineer – Contractor – Client – User

Freedom of choice

- Not dependent on specific macroelement-based analysis software
- Not dependent on software version compatibility

List of publications

- G. Correia Lopes, N. Mendes, R. Vicente, T.M. Ferreira, M. Azenha, Seismic performance assessment of existing URM-RC buildings: a BIM-based methodology, in: 3rd Eur. Conf. Earthq. Eng. Seismol., Bucharest, Romania, 2022.
- G. Correia Lopes, N. Mendes, R. Vicente, T.M. Ferreira, M. Azenha, Numerical simulations of derived URM-RC buildings: Assessment of strengthening interventions with RC, J. Build. Eng. 40 (2021) 102304. doi:10.1016/j.jobe.2021.102304.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, J. Estêvão, Displacement-based seismic performance evaluation and vulnerability assessment of buildings: The N2 method revisited, Structures. 24 (2020) 41–49. doi:10.1016/J.ISTRUC.2019.12.028.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, H. Rodrigues, BIM-based Methodology for the Seismic Performance Assessment of Existing Buildings, in: 40 Encontro Conserv. E Reabil. Edifícios, LNEC, Lisbon, 2020: pp. 785–788.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, H. Rodrigues, BIM-based methodology for the seismic performance assessment of existing buildings, Port. J. Struct. Eng. III (2020) 45–54.

- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, Intervened URM buildings with RC elements: typological characterisation and associated challenges, Bull. Earthq. Eng. 17 (2019) 4987–5019. doi:10.1007/s10518-019-00651-y.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, Desafios e Direções de Investigação na Identificação e Caracterização de Tipologias de Edifícios de Alvenaria Intervencionados com Recurso a Betão Armado, in: 11o Congr. Nac. Sismol. e Eng. Sísmica, Lisbon [in portuguese], 2019.

Under review:

- 8. Improved Equivalent Frame Model formulation for the seismic performance assessment of URM-RC buildings.
- 9. The effect of stiffened diaphragms on the seismic response of URM-RC buildings using the Equivalent Frame Model method.

Acknowledgments

- Doctoral Program InfraRisk- Analysis and Mitigation of Risks in Infrastructures
- Foundation for Science and Technology (FCT) for the PhD grant (PD/BD/135201/2017)
- University of Aveiro, FCT/MEC for the financial support to the research Unit RISCO Risks and

Sustainability in Construction (FCT/UIDB/04450/2020)

Gonçalo Correia Lopes

