Development of a robust and reliable software framework for real-time hybrid simulation (RTHS)

Gidewon Goitom Tekeste, Ph.D.

Supervisor

Dr. António Araújo Correia

Co-supervisor

Prof. Aníbal Guimarães da Costa

Outline

□ Introduction

- □ Software framework for RTHS
- Development and validation of a software framework for RTHS
 - ✓ Middleware-based scheme
 - ✓ Middleware-free scheme
- Conclusion and limitations
- □ Future directions in RTHS

Introduction

Kobe earthquake, 1995

The role of experimental methods?

- Calibration of numerical models
- Validation of techniques for mitigating seismic risk
- Developing and revising design code provisions
- Design of important structures
- Seismic risk assessment, etc.

Introduction

Shaking table test:

$$\mathsf{M}\ddot{\mathsf{U}}_{i+1} + \mathsf{C}\dot{\mathsf{U}}_{i+1} + \mathsf{P}_{\mathsf{r}} = -\mathsf{M}\ddot{\mathsf{U}}_g$$

Limitations of full-scale testing

Hybrid simulation:

$$\mathsf{M}\ddot{\mathsf{U}}_{i+1} + \mathsf{C}\dot{\mathsf{U}}_{i+1} + P_r^N + P_r^E = -\mathsf{M}\ddot{\mathsf{U}}_g$$

- Physical substructure's properties:
- Complex to model
- Absence of a constitutive model
- Relevant in the collapse mechanism of a structure, etc.

Candeias P., Correia, A., **Tekeste, G.** (2021) "Shake table testing techniques: current challenges and new trends", In: *Advances* on testing and experimentation in civil engineering, Springer Tracts in Civil Engineering book series (submitted)

Software framework for RTHS

LNEC-HS software framework includes two schemes, namely:

- i. Middleware-based scheme (using OpenFresco)
- ii. Middleware-free scheme

Main features:

- Three-loop architecture including a FE software
- Simulation coordinator programmed in LabVIEW
- NI hardware for control and DAQ system

Tekeste, G.G., Correia, A.A., Costa, A. G. (2021) "Development and validation of a robust and flexible software framework for hybrid simulation" *Experimental techniques* (submitted)

Middleware-based scheme of LNEC-HS:

Order of operations in LNEC-HS:

Command generation and compensation

Trajectory of conventional algorithm

Prediction-correction algorithm:

Adaptive Time Series (ATS) compensator:

Validation of LNEC-HS: model and test rig

System identification of ST1D

Step 1	Step 2	Step 3	Step 4
Identify 1. Inertial 2. Elastic 3. Damping forces	FRF estimate	Work out empirical equation of load transfer system	Parametric Identification via constrained nonlinear LS; and validation

System identification of ST1D

Identification of shaking table forces (step-1):

Method: Periodicity of input signals (triangular and sinusoidal)

System identification of ST1D

Parametric system identification and model validation (step-4):

Component	Description	Parameter	Estimated values	unit
Servo- controller	P-gain	K _P	1.2993	V/cm
	Valve time constant	$ au_{sv}$	0.0246	S
Come uslus	DescriptionParameterP-gain K_P Valve time constant τ_{sv} Valve flow gain $k_{sv}K_q$ Valve pressure gain & leakage factor k_{pl} Dil bulk modulus β_e Volume of oil in actuator's chamber λ_r Area of piston A Platen mass m_p	1934.50	cm ³ /s/V	
Servo-vaive	Valve pressure gain & leakage factor	k_{pl}	1.67401e-7	m³/s/kPa
	Oil bulk modulus	β_e	193716.28	kPa
Actuator	Volume of oil in actuator's chamber	V _t	0.002659	m³
	Area of piston	k_{pl} 1.67401e- β_e 193716.2 V_t 0.002659 A 0.012456 m_p 1.9751 c_t 5.7800	0.012456	m²
	Platen mass	m_p	1.9751	ton
Platen	Total damping (actuator & platen)	C _t	5.7800	kNs/m

Validation of LNEC-HS: Pre-test works

Pre-test identification:

Validation of LNEC-HS: Results

Hybrid test results:

Correia, A.A., Benavent, A., Bousias, S., **Tekeste, G.G.,** Abbiati, G., Stojadinovic, B. (2020) "Use of improved hybrid dynamic simulation for novel isolators/dissipators, for thermomechanical applications, and for soil-structure interaction studies", *Deliverable 27.3 (WP27-JRA5)*, SERA – EU H2020 Project

Middleware-free scheme of LNEC-HS:

Acceleration tracking of a shaking table

Feedforward-feedback controller:

Simulated study: Two story shear building

Equivalent force control of an actuator

Force control through compliance spring and Smith Predictor:

Soil-structure interaction (SSI) test in HS

Validation of middleware-free scheme of LNEC-HS:

- Shear building with a softstory mechanism
- SDOF model for equivalent shear beam (ESB)
- Bouc-wen hysteretic model of the first story
- Newmark based solver for the linear-elastic second story

Xm

kac

-dþ

 m_2

 m_1

Shaking table base

-dþ

-200

-300

-10

-5

0

Displacement [mm]

5

10

Conclusions and limitations

Conclusions:

- ✓ The middleware-based scheme for LNEC-HS software framework, developed and validated in the scope of this thesis, is a robust and reliable software framework for conducting slow and fast hybrid tests.
- ✓ The current implementation of the middleware-free scheme of LNEC-HS, capable of controlling two DOFs of the physical substructure, can support SSI hybrid tests of shear buildings with dominant soft-story mechanism.

Limitations:

- Custom control of actuators in middleware-based scheme for LNEC-HS software framework is not currently available
- ✓ Structures other than shear buildings are not possible for SSI hybrid testing with the current implementation of middleware-free scheme of LNEC-HS

Future directions in RTHS

Structures subjected to Fire

*****	* * * * *	* * * * * *	* * * * * *
* * * * * *	+++++	+++++	* * * * * *
* * * * * *	* * * * *	* * * * *	* * * * * *
* * * * * *	* * * * *	* * * * *	
	6		
	(12)	Sty.)	******

Xuguang Wang et al., 2018

 ✓ Structures under hydrodynamic loading (Tsunami)

Wei Song et al., 2020

✓ Masonry structures

242

120

ISs

Thank you for your attention!

gidewon.tekeste@ua.pt