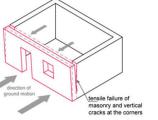
Experimental investigation into the behaviour of injection anchors in stone masonry

PhD student: Maria Pia Ciocci Supervisors: Paulo B. Lourenço, Rui Marques ISISE, University of Minho, Portugal

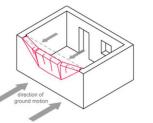
U. PORTO

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-September 17th 2021

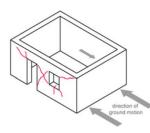
Seismic behaviour of URM buildings


Local out-of-plane overturning

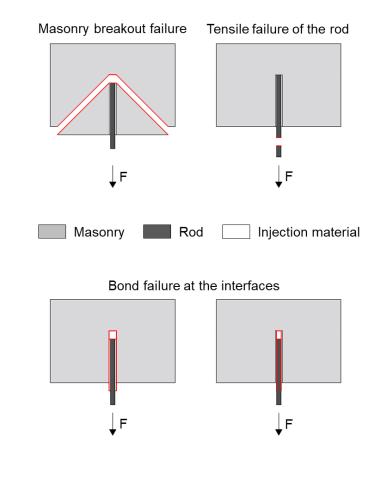
Global mechanism


 Interaction between out-of-plane and in-plane walls

Vulnerabilities


- Low material properties
- Unfavourable geometrical layout
- Inappropriate diaphragm stiffness
- Poor connections

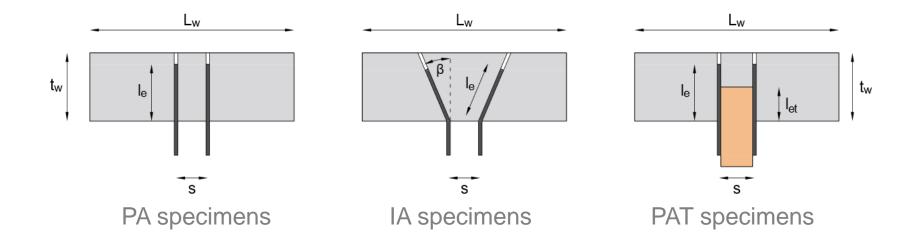
Ortega et al. (2018)


Injection anchors

Common technique to improve WTD connections

Several possible failure modes

When used in stone masonry:


- Little experimental evidence of their structural behaviour
- No specific design formulas in current building codes and guidelines

Pull-out tests

Behaviour of anchors in stone masonry using epoxy resin, when masonry breakout failure occurs

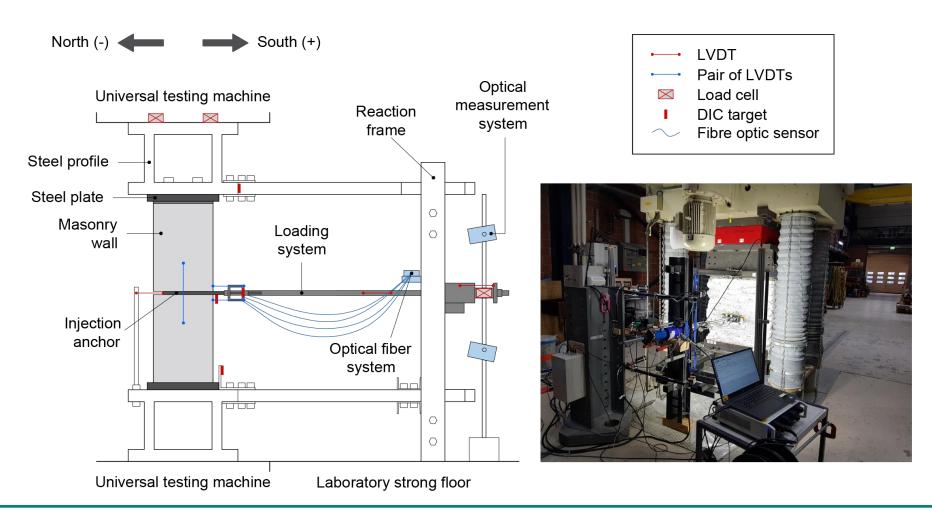
- 3 series 4 specimens per series
- Anchoring detail Overburden stress Presence of a joist pocket

Specimens

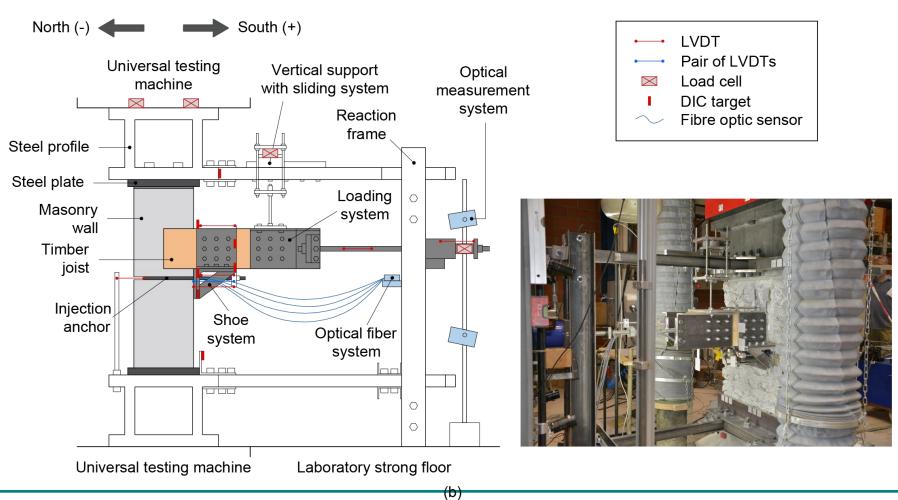
Double-leaf rubble stone masonry

- 0.9 x 0.9 x 0.3 m³
- Mortar: f_{ft} = 0.91 MPa, f_c = 4.36 Mpa
- Stone: f_c = 116.3 MPa

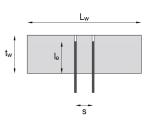
A pair of steel threaded bars with epoxy resin adhesive


- Hilti HIT-RE 500
- l_e = 250 mm
- d = 16 mm
- s = 140 mm

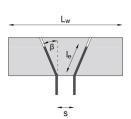
Crack repair for PAT specimens



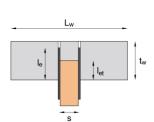
Test setup – PA & IA specimens


Results

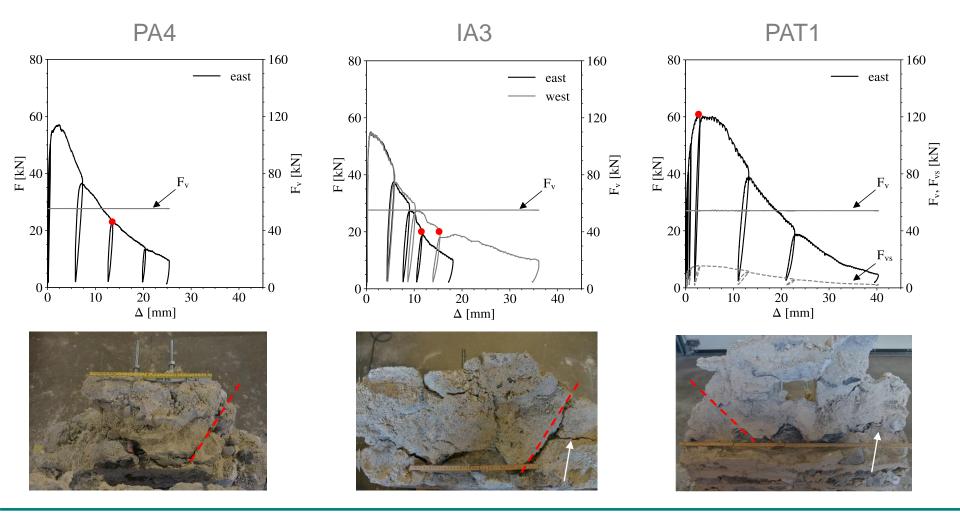
Test setup – PAT specimens



Maria Pia Ciocci / Experimental investigation into the behaviour of injection anchors in stone masonry

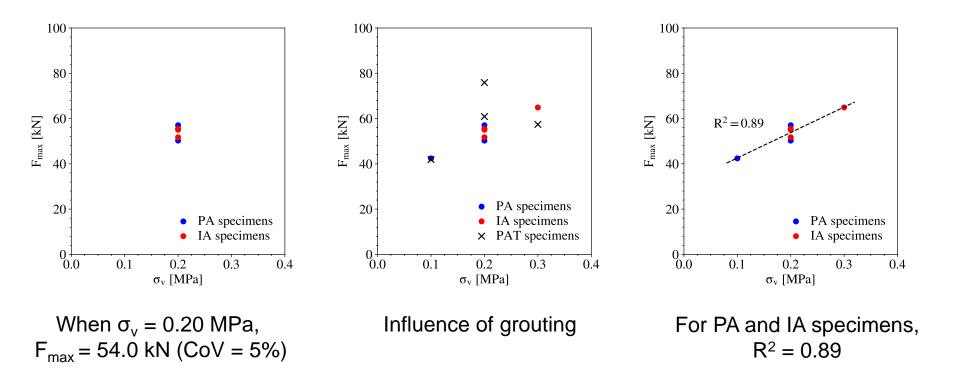

Pull-out load capacities

Specimen name	σv [MPa]	F _{max} [kN]	Δ _{Fmax} [mm]
PA1	0.1	-	
PA2	0.1	42.4	0.7
PA3	0.2	50.3	1.1
PA4	0.2	57.1	2.6

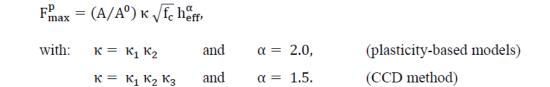


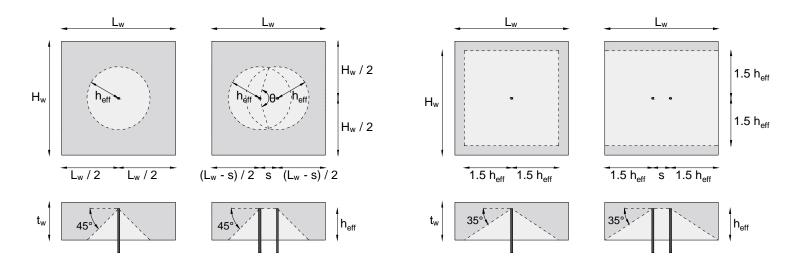
Specimen name	σv [MPa]	F _{max} [kN]	Δ_{Fmax} [mm]
IA1	0.2	51.7	0, 89, 0.93
IA2	0.2	55.5	0.66, 1.28
IA3	0.2	55.1	0.93, 1.05
IA4	0.3	64.6	0.86, 0.90

Specimen name	σv [MPa]	F _{max} [kN]	Δ _{Fmax} [mm]
PAT1	0.2	60.9	2.71
PAT2	0.2	75.9	1.72
PAT3	0.1	41.9	1.44
PAT4	0.3	57.4	2.86


Force-displacement curve and failure mode

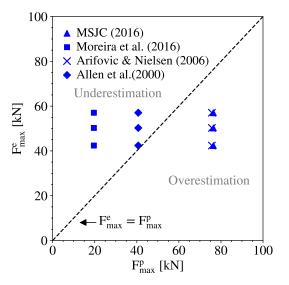
Maria Pia Ciocci / Experimental investigation into the behaviour of injection anchors in stone masonry


Results


Investigated parameters on F_{max}

Prediction of pull-out load capacity

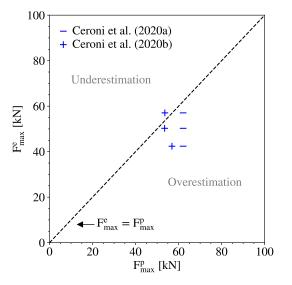
Semi-empirical formulas



Prediction of pull-out load capacity

Semi-empirical formulas

- Calibrated for brick masonry
- Scattered results
- Do not account for the effect of overburden stress



Author	Formula	MAE [kN]	MAPE [-]
MSJC (2016)	$F^{\rm p}_{\rm max} = \left(A_{\rm pt}/A_{\rm pt}^0\right) 0.33 \ \pi \ \sqrt{f_m} \ h_{\rm eff}^2$	26.4	0.55
Moreira et al. (2016)	$F_{\text{max}}^{\text{p}} = \left(A_{\text{pt}}/A_{\text{pt}}^{0}\right)\kappa_{1} \pi \sqrt{f_{\text{m}}} h_{\text{eff}}^{2}$ with $0.08 \le \kappa_{1} \le 0.33$	30.3	0.60
Arifovic & Nielsen (2006)	$F_{max}^{p} = (A_{pt}/A_{pt}^{0}) 0.96 \sqrt{f_{m}} h_{eff}^{2} (1 + d/h_{eff})$	25.7	0.54
Allen et al. (2000)	$F_{max}^{p} = 1.4 \left[(A_{cN}/A_{cN}^{0}) \ 7.11 \sqrt{f_{m}} \ h_{eff}^{1.5} \right]$	9.3	0.17

Prediction of pull-out load capacity

Empirical formulas

- Pull-out tests database
- Effect of overburden stress
- Failed in predicting the $F_{max} \sigma_v$ relationship observed in this study

Author	Formula	MAE [kN]	MAPE [-]
Ceroni et al. (2020a)	$F_{\text{max}}^{\text{p}} = k \alpha \left(\frac{d}{d_0}\right)^{\beta} l_e^{\gamma} d_0^{\delta} 0.25 f_{\text{cg}}^{\varepsilon},$	12.1	0.26
Ceroni et al. (2020b)	$F_{\text{max}}^{p} = k \left[\alpha \; \frac{(0.67 \; f_{t} + 0.4 \; \sigma_{v})^{\beta}}{f_{m}^{\theta}} + \gamma \; d_{0}^{\delta} \; l_{e}^{\epsilon} \; (0.67 \; f_{t} + 0.4 \; \sigma_{v})^{\eta} \right]$	7.1	0.11

Final remarks & Work in progress

- Pull-out tests to investigate anchoring detail, presence of joist pocket and vertical loading (σ_v)
- For all specimens:
 - $F \leq F_{max} \rightarrow$ near-linear branch & no visible damage on the wall surface
 - After $F_{max} \rightarrow$ significant decrease in force & rapid cracking propagation
 - F_{max} = 41.9 kN 75.9 kN
 - Masonry breakout failure
- Significant influence of σ_v on F_{max}
- Need for an analytical formulation which includes σ_v as a governing parameter when estimating F_{max}

Thank you

Maria Pia Ciocci mariapiaciocci@gmail.com

Acknowledgements Prof. Katrin Beyer & EESD laboratory – EPFL (Swizerland)

Maria Pia Ciocci / Experimental investigation into the behaviour of injection anchors in stone masonry