Risk analysis of transmission lines systems to natural hazards with emphasis on earthquakes and extreme winds

Seismic Collapse Risk of a isolated Transmission Tower and Transmission line system

Author: Fábio Paiva (IST)

Supervisors: Prof. Luís Guerreiro (IST) and Prof. Carneiro Barros (FEUP)

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-September 21

Outline

- Overhead Line System Overview of the **Case study**;
 - Overhead Power Line Layout;
 - Lattice transmission tower (TT);
 - Transmission line system (TLS) components
- Capacity assessment of a isolated TT and TT within the TLS
 - Numerical modeling in OpenSees
 - Pushover analysis under different lateral load patterns
 - Dynamic analysis (IDA) for validation of pushover TT results
- Seismic Collapse Risk assessment of a isolated TT and the TLS
 - Selection of ground motion records for each system
 - Assessment of the annual frequency of collapse as a risk metric
- Conclusions

Case Study Presentation – Line Layout

Overhead High Voltage Line - Sub-transmission <u>60 kV Line</u> from EDP, DISTRIBUIÇÃO located in the North of Portugal

Case Study Presentation – TT 3D View

Case Study Presentation – TLS 3D View

Capacity assessment of a isolated TT and TT within the TLS

Numerical modeling in OpenSees of a Lattice Tower

- Forced-based elements (FBE) were used for the tower members (with a fiber cross section)
 - **Eight FBE** per member to capture the initial imperfection (assumed in plane L/500-parabolic shape)
- The material model steel02 uniaxial Giuffre Menegotto-Pinto material is used for steel fibers
- Only in-plane joint eccentricities were considered in the modelling
- Corotational geometric transformation was adopted to take into account geometric nonlinearities
- The study ignored possible **local buckling effects** in the leg member cross sections

- Cross brace joint, modelled with **Equal dof constraints** (translation and torsional dof)
- Zero length elements were used to simulate the slippage joint behavior for the axial d.o.f.
- For the rotational d.o.f. a linear behavior (empirical formulation) was defined

Isolated Tower - Lateral Load Patterns

Loading patterns:

Uniform

 $F_i = W_i$

Inverted-Triangular

• Modal

Total force applied to the tower scaled to: $\sum F_i = 10 \text{ kN}$

Pushover Curves- Model A- Tower without initial member imperfections

Pushover Curves– Model B- Tower with initial member imperfections

Pushover Curves– Model B- Tower with initial member imperfections Impact of modelling uncertainty

Model B (default model) Modelling effect			Model	Base Shear	Drift	Difference (%) to default		
Model B-1	Ignores slippage effects			Modification	Dase Silear	0rint _{max} (%)	model B	
Model B-2	Assumes gusset plates as elastic			wicdification	(kN)		Base shear	Driftmax
Model B-3	Initial member	Initial member Imperfection at L/1000						
Model B-4	№ of FBE per member with imperfection 4			(Default)	241,5	0,611	-	-
			Model B-1	306,9	0,553	27,08%	-9,49%	
			(no slippage)	,	,	17 420/	46.220/	
			Iviodel B-2	292.6	0.804	17,43%	46,32%	
numerical non-			(elastic Gusset plate)	283,0	0,894			
convergence			Model B-3			1.12%	1.47%	
1.4	10			(Imper.	244,2	0,62	_,/	_,
1.4	L/1000)		,					
1.2	35 - 🏹			Model B-4	247.0	0.642	2,28%	5,07%
	30	~		(Nele=4)	247,0	0,042		
		2		-				
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	e io			-				
0.6	Ĭ							
Jali	8 15 -			-				
5 0.4 	No slippage 10		– 😑 – No Slippage					
2	Elastic GP	in the second se	Elastic GP					
0.2	Nele=4		Imp. L/1000	-				
0			- 11010 -					
0 0.5	1 1.5 0	5 1	0 15 2	0				
Normalized D	ritt	Normaliz	ed ISDR					

Pushover Curves– Model B- Tower with initial member imperfections Evaluation of pushover analysis for isolated TT

IDA (with for forty single X horizontal component records)

Fábio Paiva / Seismic Collapse Risk of a isolated Transmission Tower and Transmission line system

Capacity assessment of a TT within the TLS

Numerical modeling in OpenSees of a TLS

Capacity assessment of a TT within the TLS

Seismic Collapse Risk assessment

Selection and Scaling of Ground Motion Records

Assess the annual frequency of collapse

$$\lambda_c = \int \phi(\frac{\ln(IM_i/\mu)}{\beta}) |d\lambda_{IM}(x)|$$

• Selection and Scaling of GM records based on Conditional Mean Spectrum (SelEQ Framework, Macedo 2017)

Seismic Collapse Risk assessment of a Isolated Transmission Tower

Collapse data obtained through an Incremental Dynamic Analysis

Seismic Collapse Risk assessment of a lattice Transmission Tower

Collapse data obtained through an Incremental Dynamic Analysis

- Fragility function considering additional source of uncertainty
- Model uncertainty assumed at $\beta_{model} = 0.15$ based on paper Full scale tests of Transmission Towers Riera, J.D. et al. (1990) - Cigre document

 $E[\hat{\lambda}_c]$

(1/vear)

2.39*10-6

associated 2 standard deviation

$$\lambda_c = \int \phi(\frac{\ln(IM_i/\mu)}{\beta}) |d\lambda_{IM}(x)|$$

 $Var[\lambda_c]$

2.14*10⁻¹⁴

Model	$\hat{\lambda}_c$ (1/year)	${\widehat{P}}_{{\sf c'50y}}$ (%)	$\hat{eta}_{1 \mathbf{y}}$	$\hat{eta}_{ extsf{50y}}$
R2R	2.41*10 ⁻⁶	0.012%	4.57	3.67
R2R+ Modelling uncertainty	2.59*10 ⁻⁶	0.013%	4.55	3.65

Estimation risk uncertainty due to R2R (Parametric Bootstrap) 1000 parametric simulations 350

Seismic Collapse Risk assessment of a TLS

Collapse data obtained through an Incremental Dynamic Analysis

Seismic Collapse Risk assessment of a TLS

Collapse data obtained through an Incremental Dynamic Analysis

- · Fragility function considering additional source of uncertainty
- **Model uncertainty** assumed at $\beta = 0.15$ based on paper Full scale tests of Transmission Towers Riera, J.D .et al. (1990) – Cigre document

$$\lambda_c = \int \phi(\frac{\ln(IM_i/\mu)}{\beta}) |d\lambda_{IM}(x)|$$

Model	$\hat{\lambda}_c$ (1/year)	${\hat P}_{{\sf c'50y}}$ (%)	$\hat{eta}_{1\mathbf{y}}$	$\hat{eta}_{ extsf{50y}}$
R2R	6.91*10 ⁻⁶	0.034%	4.34	3.39
R2R+ Modelling uncertainty	2.59*10 ⁻⁶	0.037%	4.32	3.36

Estimation risk uncertainty due to R2R (Parametric Bootstrap) **1000 parametric simulations**

Conclusion

Main Conclusions

The behavior of TT under consideration is that of a brittle system with a low overstrength ratio (1,09) and ductility level (1.25).

Conclusions based on Pushover analysis:

-Different lateral load patterns induce specific failure mechanism.

-The **triangular load pattern** has shown the better prediction in the obtained ISDR profile when compared to the dynamic analysis results (high intensity levels).

-High sensitivity of the TT ultimate behavior to the modelling effects.

-Existence of different failure mechanisms between the isolated TT and TLS.

Conclusions based on nonlinear dynamic analysis:

- Indicate that most of damage is always concentrated in section 1.

- Median collapse capacity of isolated TT is more than double of TLS.
- Probability of collapse in 50 year of TLS is approximated 3x the isolated TT.

- When compared with acceptable historical failure rates of TT (0.25% in 50y)* for wind or ice events or proposed target reliability index for TLS industry (0.15% in 50y risk category III)**, both systems display a very low seismic collapse risk

*Reliability of Transmission Towers under Extreme Wind and Ice Loading (Eidinger,2012) **Question: What is an acceptable target reliability for high-voltage transmission lines? (Kempner,2018)

Seismic Collapse Risk of a isolated Transmission Tower and Transmission line System

Thank you!