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Outline

« Qverhead Line System — Overview of the Case study;
« Overhead Power Line Layout;
« Lattice transmission tower (TT);
« Transmission line system (TLS) components

- Capacity assessment of a isolated TT and TT within the TLS
« Numerical modeling in OpenSees
« Pushover analysis under different lateral load patterns
« Dynamic analysis (IDA) for validation of pushover TT results

« Seismic Collapse Risk assessment of a isolated TT and the TLS
« Selection of ground motion records for each system
« Assessment of the annual frequency of collapse as a risk metric

« (Conclusions
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Case Study Presentation — Line Layout

Overhead High Voltage Line - Sub-transmission 60 kV Line from

EDP,DISTRIBUICAO located in the North of Portugal

Overhead Power-Line Layout

Previously RADAR
Monitored Tower
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Case Study Presentation — TT 3D View
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Case Study Presentation — TLS 3D View

TLS size: v%’@
Three Towers Tower 3 '
S Four Line Spans
S Tower 5 .
7 Ground wire

} Conductor

Vertical
Longitudinal (2)

Transverse (X)

N T

Designation ASCR 325 OPGW-AA/ACS/ST U100 BLP
157/60
Outside Diameter (mm) 23,45 19,60 -
Modulus of Elasticity (GPa) 79,5 84,5 76,5
Cross-sectional area (mm?2) 325 219,66 -
Mass per unit length (kg/Km) 1260 868 30 (total mass)
Nominal breaking load (kN) 109,38 112,6 100

Strain Tower
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Capacity assessment of a isolated TT and TT within the TLS
Numerical modeling in OpenSees of a Lattice Tower

» Forced-based elements (FBE) were used for the tower
g = members (with a fiber cross section)

« Eight FBE per member to capture the initial imperfection
(assumed in plane L/500-parabolic shape)

Strain

« The material model steel02 uniaxial Giuffre Menegotto-Pinto
material is used for steel fibers

3 divI eSS
20 div « Only in-plane joint eccentricities were considered in the
Single angle fiber section mOdel | | ng
- Corotational geometric transformation was adopted to take
Leg section class 4 into account geometric nonlinearities

« The study ignored possible local buckling effects in the leg
member cross sections
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Capacity assessment of a isolated TT and TT within the TLS

Numerical modeling in OpenSees of a Lattice Tower

Elastic beam-column
(to capture the
rigidity of Gusset
plate)
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Panel Numerical model
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.. . A
Gusset plates were modeled combining elastic l“}ﬁ:‘;
Beam-Column and FBE LA

Lapped bolted joint- Type C1
and C2

Cross brace joint, modelled with Equal dof constraints (translation and torsional dof)

Zero length elements were used to simulate the slippage joint behavior for the axial d.o.f.

For the rotational d.o.f. a linear behavior (empirical formulation) was defined
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Capacity assessment of a isolated TT

|Isolated Tower - Lateral Load Patterns

Loading patterns:
* Uniform
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* Inverted-Triangular
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Capacity assessment of a isolated TT

Pushover Curves— Model A- Tower without initial member imperfections
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Load Patterns - - ..
- Modal Triangular Uniform = Bottom of the tower section is not as rigid

V,, (kN) 366.4 323.3 266.5 . as floor system in buildings
ISDR (%) 0.97 1.45 0.95 ‘ Height/width aspect ratio much higher
Driftx, . (%) 247 100 0.30 than buildings
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Capacity assessment of a isolated TT

Pushover Curves— Model B- Tower with initial member imperfections
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Capacity assessment of a isolated TT

Pushover Curves— Model B- Tower with initial member imperfections
Impact of modelling uncertainty
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Capacity assessment of a isolated TT
Pushover Curves— Model B- Tower with initial member imperfections
Evaluation of pushover analysis for isolated TT
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Capacity assessment of a TT within the TLS

Numerical modeling in OpenSees of a TLS

Zero-length elements to simulate
remote end span conditions

30 Elastic beam-columns (per cable) 19]2.0
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Capacity assessment of a TT within the TLS
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Seismic Collapse Risk assessment

Selection and Scaling of Ground Motion Records

» Assess the annual frequency of collapse

Annual rate of exceedance Aga [1/year]
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» Selection and Scaling of GM records based on Conditional Mean Spectrum (SelEQ Framework, Macedo 2017)
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A total of 40 GM with 2 components (NGA West2)
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Seismic Collapse Risk assessment of a Isolated Transmission
Tower

Collapse data obtained through an Incremental Dynamic Analysis

3 " T " 3

Selected IM:
Sag(Teq=T1=0.30s ,5%)

Selected EDP:
Maximum Inter-Section drift:

$,4(T;5%) ()
o

$,4(T15%) (9)
o

05 05 —— 50% fractle| |
0,05 = Max [ \/ISDRi,x(t)Z + ISDRi’Z(t)Zl . ] | . | —
0 0.5 1 1.5 2 0 0.5 1 1.5 2
maximum ISDR, Omax [%] maximum ISDR, 0max [%]
1
Other considerations for the Dynamic Analysis:
» Mean properties (JCSS Probabilistic Model code) 5 086
« Rayleigh Damping model (C = aM + BK;y;) g
« ¢=5% viscous damping 306
« « and B (f;=3,27 Hz and f,=13.01Hz) ‘g
S040
£
« Fragility function fitting with the method of moments « |
» Assumed a lognormal distribution Fitted fragility function
]n([M/u) O Empirical CDF
Pcollapse = p(—————2) % 15 2 25 3 35 4
,B IM = Sag(T1,5%) (9)
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Seismic Collapse Risk assessment of a lattice Transmission Tower

Collapse data obtained through an Incremental Dynamic Analysis

 Fragility function considering additional source of uncertainty
* Model uncertainty assumed at g,,,,.; = 0.15 based on paper Full scale tests of Transmission Towers
Riera, J.D .et al. (1990) — Cigre document
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Seismic Collapse Risk assessment of a TLS

Collapse data obtained through an Incremental Dynamic Analvsis

2
I
Selected IM: B 77 3
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Other considerations for the Dynamic Analysis:
» Mean properties (JCSS Probabilistic Model code)
« Rayleigh Damping model (C = aM + BK;y,;)

» ¢=5% viscous damping (Towers)

* « and g (f=2,27 Hz and f=11.3Hz)

» ¢=1% viscous damping (Cables)

« «a andp (f=0,14 Hz and fj=0,98Hz)
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Seismic Collapse Risk assessment of a TLS

Collapse data obtained through an Incremental Dynamic Analysis

 Fragility function considering additional source of uncertainty
* Model uncertainty assumed at § = 0.15 based on paper Full scale tests of Transmission Towers

Riera, J.D .et al. (1990) — Cigre document
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Conclusion

Main Conclusions

The behavior of TT under consideration is that of a brittle system with a low overstrength
ratio (1,09) and ductility level (1.25).

Conclusions based on Pushover analysis:
-Different lateral load patterns induce specific failure mechanism.

-The triangular load pattern has shown the better prediction in the obtained ISDR profile
when compared to the dynamic analysis results (high intensity levels).

-High sensitivity of the TT ultimate behavior to the modelling effects.
-Existence of different failure mechanisms between the isolated TT and TLS.

Conclusions based on nonlinear dynamic analysis:
- Indicate that most of damage is always concentrated in section 1.

- Median collapse capacity of isolated TT is more than double of TLS.
- Probability of collapse in 50 year of TLS is approximated 3x the isolated TT.

- When compared with acceptable historical failure rates of TT (0.25% in 50y)* for wind or ice
events or proposed target reliability index for TLS industry (0.15% in 50y risk category Ill)**,
both systems display a very low seismic collapse risk

*Reliability of Transmission Towers under Extreme Wind and Ice Loading (Eidinger,2012)
**Question: What is an acceptable target reliability for high-voltage transmission lines? (Kempner,2018)
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Seismic Collapse Risk of a isolated Transmission Tower and
Transmission line System

Thank you!
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