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• Overhead Line System – Overview of the Case study;
• Overhead Power Line Layout;

• Lattice  transmission tower (TT);

• Transmission line system (TLS) components 

Outline

• Capacity assessment of a isolated TT and TT within the TLS

• Numerical modeling in OpenSees

• Pushover analysis under different lateral load patterns

• Dynamic analysis (IDA) for validation of pushover TT results

• Seismic Collapse Risk assessment of a isolated TT and the TLS

• Selection of ground motion records for each system 

• Assessment of the annual frequency of collapse as a risk metric

• Conclusions
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Overhead High Voltage Line - Sub-transmission 60 kV Line from 
EDP,DISTRIBUIÇÃO located in the North of Portugal

Case Study Presentation – Line Layout

Previously RADAR 

Monitored Tower
Overhead Power-Line Layout
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Case Study Presentation – TT 3D View 

Steel class - S275

Brace 
connection

Pinned joint in 
brace intersection

Equal steel angles
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Case Study Presentation – TLS 3D View 

Description Conductor Ground wire Insulator

Designation ASCR 325 OPGW-AA/ACS/ST 

157/60

U100 BLP

Outside Diameter (mm) 23,45 19,60 -

Modulus of Elasticity (GPa) 79,5 84,5 76,5

Cross-sectional area (mm2) 325 219,66 -

Mass per unit length (kg/Km) 1260 868 30 (total mass)

Nominal breaking  load (kN) 109,38 112,6 100

Strain Tower

TLS size:
Three Towers
Four Line Spans

(Z)

(X)
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Numerical modeling in OpenSees of a Lattice Tower

Capacity assessment of a isolated TT and TT within the TLS

• Forced-based elements (FBE) were used for the  tower 
members (with a fiber cross section)

• Eight FBE per member to capture the initial imperfection 
(assumed in plane L/500-parabolic shape)

Leg section class 4

Single angle fiber section

20 div

20 div

3 div

3 div

• Only in-plane joint eccentricities were considered in the 
modelling

• The material model steel02 uniaxial Giuffre Menegotto-Pinto 
material is used for steel fibers 

• The study ignored possible local buckling effects in the leg 
member cross sections

• Corotational geometric transformation was adopted to take 
into account  geometric nonlinearities
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Numerical modeling in OpenSees of a Lattice Tower

Capacity assessment of a isolated TT and TT within the TLS

• Cross brace joint, modelled with Equal dof constraints (translation and torsional dof)

Panel Numerical model

Pinned joint
Zero Length

element

Bolted joint –
Slippage model

FF

Gusset plate

as FBE

8 FBE element

Elastic beam-column

(to capture the 

rigidity of Gusset 

plate)

Elastic beam

Column to capture the in-

plane joint eccentricity

8 FBE element

(in-plane 

imperfection)

L/500

• Zero length elements were used to simulate the slippage joint behavior for the axial d.o.f. 

Lapped bolted joint- Type C1 
and C2

Lap-splice bolted joint-Type A

a)

Bolts

• Gusset plates were modeled combining elastic 
Beam-Column and FBE

• For the rotational d.o.f. a linear behavior (empirical formulation) was defined
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Isolated Tower - Lateral Load Patterns

Capacity assessment of a isolated TT

Loading patterns:

• Uniform

• Inverted-Triangular

Total force applied 
to the tower scaled 
to: ∑ �� �10 kN

• Modal
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Pushover Curves– Model A- Tower without initial member imperfections

Capacity assessment of a isolated TT

Load Patterns
Modal              Triangular                  Uniform

Vb (kN) 366.4 323.3 266.5

ISDR (%) 0.97 1.45 0.95

Driftxmax (%) 2.47 1.22 0.30
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• Bottom of the tower section is not as rigid 

as floor system in buildings

• Height/width aspect ratio much higher 

than buildings
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Pushover Curves– Model B- Tower with initial member imperfections

Capacity assessment of a isolated TT

Load Patterns
Modal              Triangular                  Uniform

Vb (kN) 283.6 241.5 248.1

ISDR (%) 0.61 0.43 1.5

Driftxmax (%) 1.48 0.61 0.26

numerical non-
convergence

Modal case

uniform case
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Pushover Curves– Model B- Tower with initial member imperfections

Impact of modelling uncertainty

Capacity assessment of a isolated TT

numerical non-
convergence
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Model 

Modification

Base Shear 

(kN)

Driftmax 

(%)

Difference (%) to default 

model B

Base shear            Driftmax

Model B

(Default) 241,5 0,611 - -

Model B-1

(no slippage)
306,9 0,553

27,08% -9,49%

Model B-2

(elastic 

Gusset plate)

283,6 0,894

17,43% 46,32%

Model B-3

(Imper. 

L/1000)

244,2 0,62

1,12% 1,47%

Model B-4

(Nele=4)
247,0 0,642

2,28% 5,07%

Model B (default model) Modelling effect 

Model B-1 Ignores slippage effects

Model B-2 Assumes gusset plates as elastic

Model B-3 Initial member Imperfection at L/1000

Model B-4 Nº of FBE per member with imperfection  4
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Pushover Curves– Model B- Tower with initial member imperfections

Evaluation of pushover analysis for isolated TT

Capacity assessment of a isolated TT
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Zero-length elements to simulate 
remote end span conditions

Numerical modeling in OpenSees of a TLS

Capacity assessment of a TT within the TLS

Tower 4
Model B

Tower 3

Tower 5

Simplified model

30 Elastic beam-columns (per cable)
Sag/span=5%

T1 (X or transverse direction)=0,40 s

T1 (Z or longitudinal direction)=0,44 s

Z

X



14
Fábio Paiva / Seismic Collapse Risk of a isolated Transmission Tower and Transmission line system

Capacity assessment of a TT within the TLS
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283.6 241.5 248.1

Driftmax (%)
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Modal case- Collapse mechanism
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Selection and Scaling of Ground Motion Records

Seismic Collapse Risk assessment

• Assess the annual frequency of collapse 

• Conditional Mean Spectrum for Sag(Teq,5%); 
• Probability of exceedance 10% in 50y T=475 y;
• Soil Type C assumed
• A total of 40 GM with 2 components (NGA West2)

%& � ' (�ln �+�/-
. � �%/0���

• Selection and Scaling of GM records based on Conditional Mean Spectrum (SelEQ Framework, Macedo 2017)

IM=Sag(123 , 5%� � �78�123� · �7:�123�
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Collapse data obtained through an Incremental Dynamic Analysis

Seismic Collapse Risk assessment of a Isolated Transmission 
Tower 

Selected IM:
Sag(Teq=T1=0.30s ,5%)

Selected EDP:
Maximum Inter-Section drift:

�;78 � max �����,8���" + �����,:���"

Other considerations for the Dynamic Analysis:
• Mean properties (JCSS Probabilistic Model code)
• Rayleigh Damping model (@ � A+ + .B����

• C=5% viscous damping
• A and . (f1=3,27 Hz and f2=13.01Hz)
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• Fragility function fitting with the method of moments
• Assumed a lognormal distribution
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Collapse data obtained through an Incremental Dynamic Analysis

Seismic Collapse Risk assessment of a lattice Transmission Tower 

DE�FF
GH� � (�ln �+�/-
. �

%& � ' (�ln �+�/-
. � �%/0���

Model %L& (1/year) DQc,50y(%) .L1y .L50y

R2R
2.41*10-6 0.012% 4.57 3.67

R2R+ Modelling

uncertainty 2.59*10-6 0.013% 4.55 3.65

Estimation risk uncertainty due to R2R (Parametric Bootstrap)
1000 parametric simulations

• Fragility function considering additional source of uncertainty
• Model uncertainty assumed at .	���F � 0.15 based on paper Full scale tests of Transmission Towers

Riera, J.D .et al. (1990) – Cigre document

Model
S[%L&]

(1/year)

V

[%L&] @. �. W[%L&]
R2R-

Parametric Bootstrap
2.39*10-6 2.14*10-14 6%

Pcollapse in 50 years = 0.010 % - 0.013 %

associated 2 standard deviation
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Collapse data obtained through an Incremental Dynamic Analysis

Seismic Collapse Risk assessment of a TLS

Selected IM:
Sag(Teq=0.42 s ,5%)

Selected EDP:
Maximum Inter-Section drift:

�;78 � max �����,8���" + �����,:���"

Other considerations for the Dynamic Analysis:
• Mean properties (JCSS Probabilistic Model code)
• Rayleigh Damping model (@ � A+ + .B����

• C=5% viscous damping (Towers)
• A and . (fi=2,27 Hz and fj=11.3Hz)
• C=1% viscous damping (Cables)
• A and . (fi=0,14 Hz and fj=0,98Hz)

DE�FF
GH� � (�ln �+�/-
. �

-I � 1,08
.L � 0,226
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Collapse data obtained through an Incremental Dynamic Analysis

Seismic Collapse Risk assessment of a TLS

DE�FF
GH� � (�ln �+�/-
. �

%& � ' (�ln �+�/-
. � �%/0���

Model %L& (1/year) DQc,50y(%) .L1y .L50y

R2R
6.91*10-6 0.034% 4.34 3.39

R2R+ Modelling

uncertainty 2.59*10-6 0.037% 4.32 3.36

Estimation risk uncertainty due to R2R (Parametric Bootstrap)
1000 parametric simulations

• Fragility function considering additional source of uncertainty
• Model uncertainty assumed at . � 0.15 based on paper Full scale tests of Transmission Towers

Riera, J.D .et al. (1990) – Cigre document

Model
S[%L&]

(1/year)

V

[%L&] @. �. W[%L&]
R2R-

Parametric Bootstrap
6.95*10-6 3.86*10-13 9%

Pcollapse in 50 years = 0.028 % - 0.041 %

associated 2 standard deviation
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Main Conclusions
The behavior of TT under consideration is that of a brittle system with a low overstrength

ratio (1,09) and ductility level (1.25).

Conclusion

- Median collapse capacity of  isolated TT is more than double of TLS.

- Probability of collapse in 50 year of TLS is approximated 3x the isolated TT.

Conclusions based on Pushover analysis:

-Different lateral load patterns induce specific failure mechanism. 

-The triangular load pattern has shown the better prediction in the obtained ISDR profile 

when compared to the dynamic analysis results (high intensity levels). 

-High sensitivity of the TT ultimate behavior to the modelling effects. 

Conclusions based on nonlinear dynamic analysis:

-Existence of different failure mechanisms between the isolated TT and TLS.

**Question: What is an acceptable target reliability for high-voltage transmission lines? (Kempner,2018)

*Reliability of Transmission Towers under Extreme Wind and Ice Loading (Eidinger,2012)

- Indicate that most of damage is always concentrated in section 1.

- When compared with acceptable historical failure rates of TT (0.25% in 50y)* for wind or ice 

events or proposed target reliability index for TLS industry (0.15% in 50y risk category III)**, 

both systems display a very low seismic collapse risk 
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Seismic Collapse Risk of a isolated Transmission Tower and 
Transmission line System 

Thank you!


