Development of Rapid Methods for Seismic Assessment of Existing Masonry Buildings

Author: Vasco Bernardo (<u>vbernardo@lnec.pt</u>) – 3rd year

Supervisors: Paulo Candeias (LNEC) and Aníbal Costa (University of Aveiro, Portugal)

Table of contents

- Motivation and Objectives
- Overview of old masonry building stock
- Main structural features of old masonry buildings
- Eurocode 8 part 3: Assessment and retrofitting of existing buildings
- Rapid methods for seismic assessment of masonry buildings
 - Summary and Procedures
 - Geometry and materials properties
 - Modeling and general assumptions
 - Probabilistic seismic analysis and reliability
 - Development of rapid methods for seismic assessment
 - Calibration of simplified methods

Final comments

Motivation

- The major number of collapses caused by earthquake events occur in masonry buildings;
- Reduce the impacts and losses and conservation of built heritage;
- Most of the old masonry buildings in Portugal were designed only for gravity loads without considering the seismic effects (first regulation against earthquakes in 1958);
- Seismic assessment of buildings is mandatory since the publication of LD nº95/2019 and Ordinance nº302/2019.

Research Objectives

- Seismic Vulnerability Assessment of Old Masonry buildings, identify building fragilities and reduce seismic risk.
- Propose Rapid methods for seismic assessment of masonry existing buildings, according to Eurocode 8 part 3 (NP EN 1998-3:2017).

Earthquake fatalities by cause (1900-1992) Coburn & Spence, 2002

Overview of old masonry building stock

Building typology	Construction period
Pre-Pombalinos	up to 1755
Pombalino	1755 to 1870
Gaioleiros	1870 to 1930
Placa	1930 to 1960

Eurocode 8-3: Assessment and retrofitting of buildings – Annex C

		Local Analysis	Global Analysis		
Methods		Linear (lateral forces and modal response spectrum analysis)	Linear and Nonlinear (nonlinear static or dynamic)		
Knowledge Level (KL) and confidence factor (CF) (depends on the information collected)		Limited (KL1): CF=1,35 Extended (KL2): CF=1,20 Comprehensive (KL3): CF=1,00	Extended (KL2): CF=1,20 Comprehensive (KL3): CF=1,00		
Limit states (depends on the importance class and KL)		Damage Limitation (DL): Tr = 73years (class: III and IV)	Damage Limitation (DL): Tr = 73 years (class: III and IV) Significant Damage (SD): Tr =308 years (class: all) Near Collapse (NC): Tr = 975 years (class: III and IV)		
Ductile mechanisms μ/CF		Yielding strength and deformation	Linear: base shear (only for DL) Nonlinear: roof displacement and verification in deformation (SD and NC) and strength (DL)		
(using mean properties μ)	Brittle mechanisms μ/(CFγ _m)	Yielding strength	Linear: base shear (only for DL) Nonlinear: roof displacement and verification in strength (all Limit States)		

Rapid methods for seismic assessment

Summary

Procedures to develop Rapid methodologies for seismic assessment of masonry buildings

- 1. Geometry and materials
 - Geometry based on a comprehensive and exhaustive survey (around 100 buildings);
 - Material properties with a wide range of allowable values to consider the variability in masonry characterization;
 - Database with 9000 buildings with different geometry and up to 5 stories height;
- 2. Modeling and general assumptions
 - Numerical modeling based on Macroelement Tremuri (Gambarotta and Lagomarsino);
 - Macroelement calibrated through experimental cyclic tests;
 - Only in-plane mechanisms are simulated. The out-of-plane mechanisms are not considered or are prevented NP EN 1998-3:2017;
 - Capacity curves obtained using nonlinear static analysis (performance-based);
 - Elastic response spectrum NP EN 1998-3:2017 (4.1(1));
 - Bilinearization of capacity curve and performance points NP EN 1998-3:2017 (4.4.4.4)

Summary

Procedures to develop Rapid methodologies for seismic assessment of masonry buildings

- **3.** Probabilistic seismic analysis and reliability
 - Performance points obtained for all capacity curves (*per se*), considering all seismic actions (onshore and offshore) defined in Eurocode, return periods up to 5000 years and soil types A, B and C;
 - Derive a relationship between the reliability index and seismic coefficient;
 - Analytical solution was obtained for the annual exceedance probability assuming an elastic-perfectly-plastic behavior;
- 4. Rapid methods for seismic assessment
 - The proposed methodologies are divided in two levels and depend on the evaluated parameter: ratio between the walls area and floor area (method I) or seismic coefficient (method II).

Summary

Procedures to develop Rapid methodologies for seismic assessment of masonry buildings

- 5. Calibration of propose methods
 - The reliability index to be required is adjusted considering the number of structures that verify the safety or not in terms of deformation, for the significant damage (SD) limit state and Tr=308 years, according to Eurocode for a global nonlinear analysis;
 - The accordance between the simplified methods (method I and II) and the reference method or method III (Eurocode) is assessed by confidence tests, to verify if the propose methodologies are conservative or not;

Main steps for the development of Rapid methods

Summary Procedures to develop Rapid methodologies for seismic assessment of masonry buildings

Requirements for Rapid assessment method

Method	Structural model	Evaluate parameter	Requirements	
III	Global nonlinear analysis	Global analysis: top displacement for 80% of maximum base shear	Geometry Wall thickness	
(Reference EC8)	Linear analysis	Local analysis: maximum strength (flexure and/or shear)	Material properties Self-weight	
servative =	Not necessary	Seismic coefficient	Geometry Wall thickness Material properties Self-weight	
More con	Not necessary	Ratio between the walls area and floor area	Geometry Wall thickness Material properties Self-weight	

Overview behind the methodology

Geometric characterization to define the representative buildings:

- Number of floors;
- Plan dimensions and elevation;
- Number of partitions;
- Wall thickness;
- Percentage of openings;
- Spandrels and piers dimensions;
- Slab thickness;
- Constructive and design details (materials, foundations, loads...)

Mean wall thickness(m)

Wall	Floor						
vvali	1	2	3	4 and 5			
Partition	0,11	0,11	0,11	0,11			
Interior	0,20	0,21	0,20	0,20			
Common	0,32	0,31	0,29	0,29			
Facade	0,48	0,47	0,42	0,42			

> Defined **9 plans** to represent the building stock geometry

- > Analysis of uncertainty in masonry properties *E*, *G*, *Y*, *f*, *c*, μ .
 - > Monte Carlo simulation (100 samples).
 - Error ~ 5% for samples generated with a C.I. = 95%

Variable		Maso (solid cla	onry y bricks)	Maso hollow cla)	onry ay bricks)	Distribution	
		mean	COV	mean	COV		
>	E [GPa]	4,50	0,25	1,50	0,25	LogNormal	
	G [GPa]	1,80	0,29	0,65	0,29	LogNormal	
	Υ [kN/m³]	18,0	0,05	12,0	0,05	Normal	
	Factor K [-]	800 (250 - 1100)	0,25	700 (250 - 1100)	0,25	Truncated Normal	
	Fc [MPa]	5.40	0,17	2,10	0,17	LogNormal	
	c [MPa]	0,20	0,40	0,20	0,4	LogNormal	
	μ[-]	0,15	0,19	0,15	0,19	LogNormal	

> Calibration and validation of macroelement on Tremuri with cyclic experimental test:

Built **45 numerical models** (9 plans x 1 to 5 floors) to represent the building stock.

Step 1: Performance point for a given seismic action

Step 2: Probabilistic seismic assessment and reliability

Step 3: Rapid methods for seismic assessment

Step 4: Rapid methods and Calibration – method II

Seismic coefficient to be compared to the demand, should be obtained using the following expressions:

$$V_{Rk} = \min\left\{V_{clk}, V_{cdk}, V_{flk}\right\}$$

Sliding:

$$V_{clk} = l_c \cdot t \cdot (f_{v0k} + \mu \cdot \sigma_0)$$

Diagonal shear:

$$V_{cdk} = A \cdot \frac{f_{tk}}{b} \cdot \sqrt{\frac{\sigma_0}{f_{tk}} + 1}$$

Flexure:

$$V_{flk} = \frac{\frac{\sigma_0 \cdot t \cdot l^2}{2} \cdot \left(1 - \frac{\sigma_0}{k \cdot f_k}\right)}{\alpha \cdot h}$$

Seismic coefficient correction for nonlinear effects 2.000 $y = 0.4896x^{0.8432}$ $R^2 = 0.8973$ 0.200 0.020 0.02 0.2000 0.200

Seismic Coef. by Method II

$$_{k} + \mu \cdot \sigma_{0}$$
) Seismic coefficient

Step 4: Rapid methods and Calibration – method II

Required Seismic Coefficient for $\beta = 2.5$ (uniform reliability index)

Seismic Zone	1 piso			2 piso			3 piso			4 piso			5 piso		
	Solo A	Solo B	Solo C	Solo A	Solo B	Solo C	Solo A	Solo B	Solo C	Solo A	Solo B	Solo C	Solo A	Solo B	Solo C
1.1	0.359	0.416	0.450	0.328	0.365	0.398	0.303	0.341	0.378	0.280	0.327	0.360	0.266	0.316	0.339
1.2	0.284	0.354	0.398	0.262	0.323	0.352	0.252	0.297	0.326	0.239	0.279	0.312	0.225	0.268	0.303
1.3	0.213	0.274	0.320	0.193	0.253	0.297	0.187	0.245	0.278	0.184	0.232	0.258	0.180	0.219	0.245
1.4	0.130	0.185	0.226	0.120	0.172	0.205	0.117	0.166	0.200	0.117	0.164	0.196	0.116	0.162	0.191
1.5	0.054	0.096	0.120	0.059	0.096	0.115	0.064	0.093	0.112	0.066	0.092	0.111	0.066	0.091	0.111
1.6	0.096	0.043	0.047	0.041	0.039	0.052	0.030	0.041	0.056	0.027	0.045	0.060	0.028	0.048	0.061
2.1	0.517	0.572	0.618	0.433	0.483	0.513	0.350	0.389	0.408	0.278	0.311	0.331	0.229	0.255	0.270
2.2	0.456	0.519	0.556	0.388	0.437	0.469	0.311	0.351	0.378	0.242	0.279	0.302	0.197	0.228	0.248
2.3	0.342	0.431	0.481	0.308	0.375	0.411	0.243	0.296	0.327	0.181	0.227	0.254	0.143	0.182	0.206
2.4	0.207	0.293	0.350	0.194	0.268	0.315	0.153	0.211	0.248	0.109	0.155	0.185	0.084	0.121	0.147
2.5	0.138	0.201	0.249	0.128	0.190	0.230	0.106	0.150	0.182	0.083	0.108	0.132	0.068	0.084	0.103

Step 4: Rapid methods and Calibration – method II

	Method II						
Seismic Zone	Match	Not Match	False Positives	False Negatives	FalseNegatives Global	False Positives Global	
1.1	66.4%	33.6%	6.9%	93.1%	31.3%	2.3%	
1.2	61.9%	38.1%	5.3%	94.7%	36.1%	2.0%	
1.3	64.8%	35.2%	6.8%	93.2%	32.8%	2.4%	
1.4	77.9%	22.1%	11.1%	88.9%	19.7%	2.5%	
1.5	94.2%	5.8%	39.1%	60.9%	3.5%	2.3%	
1.6	99.7%	0.3%	98.8%	1.2%	0.0%	0.3%	
2.1	34.8%	65.2%	0.0%	100.0%	65.1%	0.0%	
2.2	33.2%	66.8%	0.0%	100.0%	66.7%	0.0%	
2.3	42.0%	58.0 <mark>%</mark>	0.1%	99.9%	58.0%	0.1%	
2.4	65.6%	34.4%	0.7%	99.3%	34.2%	0.2%	
2.5	86.5%	13.5%	3.3%	96.7%	13.0%	0.4%	
					32.8%	1.1%	

	Assessment					
EC8	Method II	Status				
>	✓	Match				
×	*	Match				
×	~	Not Match (F.P.) – not conservative				
~	*	Not Match (F.N.) – conservative				

33.90%

<mark>buildings</mark>

Final comments

- > 9000 buildings were analyzed in different soils and seismic zones (27000 in total);
- Out-of-plane mechanisms are not considered in this version;
- The Rapid methods are valid for soils A, B and C; importance class II; regular geometry and up to 5 stories height;
- The method is valid for building aggregates;
- The assertiveness of the method II is around 34%, where 33% of the cases are false negatives;
- Method I was not presented but is more conservative and requires only the thickness of the primary walls. The demand will be expressed in terms of allowable tension or walls area in the seismic action direction;
- Extend the methodologies for flexible diaphragms.

THANK YOU

