### Seismic Risk Mitigation Strategies; Pre Code RC buildings

Sanam Moghimi



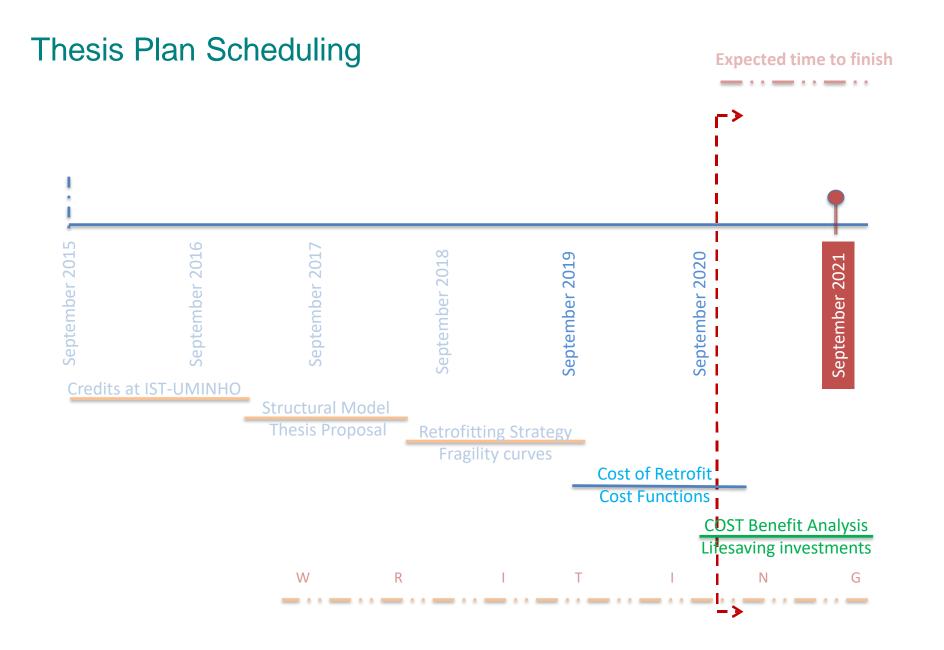













#### Outline

- Thesis Review
- Accomplished Tasks
- Cost Benefit Alternative

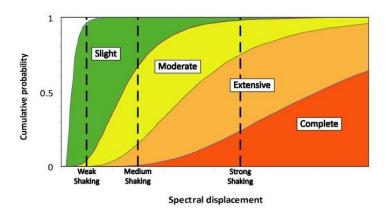
#### Outline

- Thesis Review
- Accomplished Tasks
- Cost Benefit Alternative



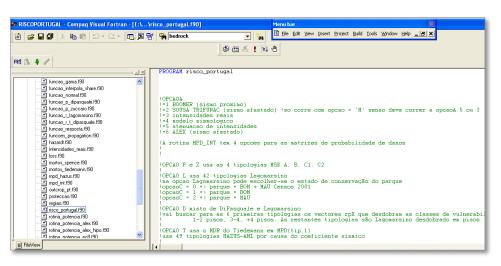
#### Risk Assessment Platform

 LNECloss is a seismic scenario risk assessment platform, integrated on a Geographic Information System (GIS), which comprises modules dealing with bedrock input, local soil effects, vulnerability and fragility analysis, human and economic losses

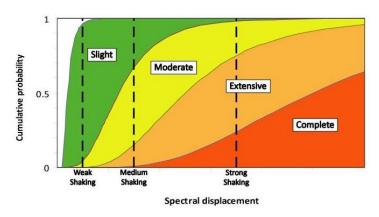

#### **LNECloss Simulator**

- Flexible tool
  - easy update
  - modular structure
  - integrated in a GIS

# **LNECLOSS Limitations**

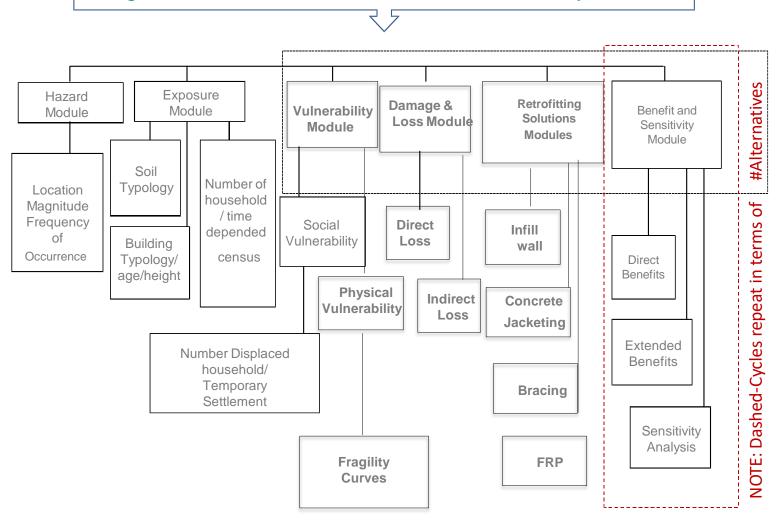

- Fragility curves
  - Implementation is based on HAZUS
  - Simplification of the "actual" damage progression in pre-seismic code buildings

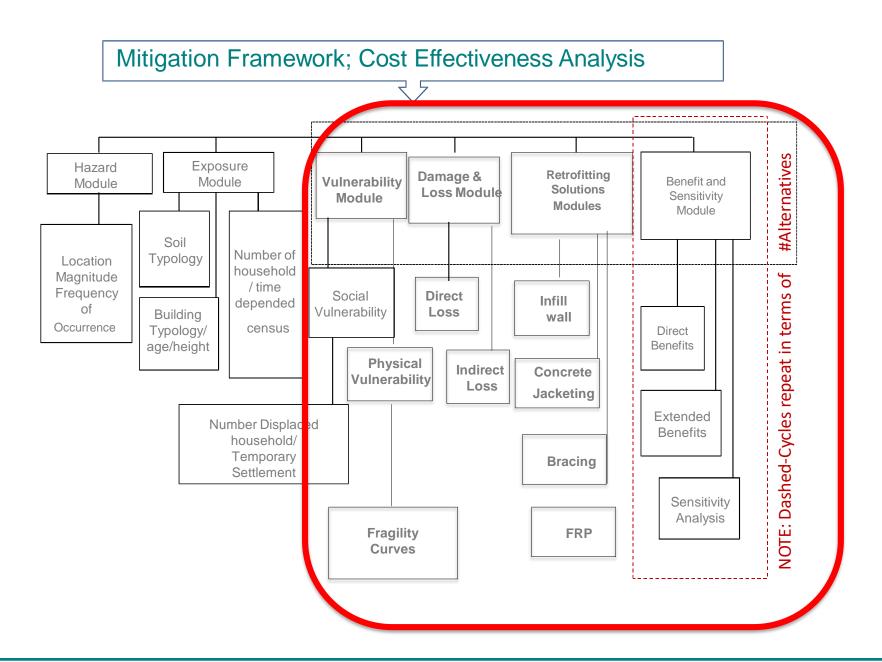
$$P_{D}(D \ge d \mid Sd) = \Phi \left[ \frac{1}{\beta_{d}} \ln \left( \frac{Sd}{\langle Sd_{d} \rangle} \right) \right]$$




#### **LNECLOSS Limitations**

- Fragility curves
  - Implementation is based on HAZUS
  - Simplification of the "actual" damage progression in pre-seismic code buildings
- Mitigation strategies
  - Conceptual assessment of mitigation strategies

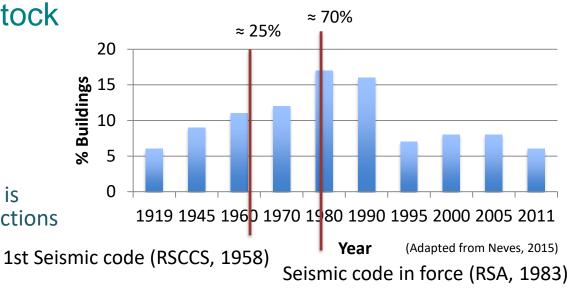




$$P_{D}(D \ge d \mid Sd) = \Phi \left[ \frac{1}{\beta_{d}} \ln \left( \frac{Sd}{\langle Sd_{d} \rangle} \right) \right]$$



| #<br>Streng | Mason | ,<br>SC  | Improvement of force capacity |     | •          |  | Improvement of ductile capacity. |
|-------------|-------|----------|-------------------------------|-----|------------|--|----------------------------------|
| St          | Ä     | <b>—</b> | λ                             | γ   | $\delta_d$ |  |                                  |
| 1           | ✓     | ✓        | -                             | 25% | 25%        |  |                                  |
| 2           | ✓     | ✓        | -                             | 50% | 25%        |  |                                  |
| 3           | ✓     | ✓        | -                             | 75% | 25%        |  |                                  |
| 4           | ✓     | ✓        | 75%                           | 75% | 25%        |  |                                  |
| 5           | ✓     | ✓        | -                             | 25% | 50%        |  |                                  |
| 6           | ✓     | <b>√</b> | -                             | 50% | 50%        |  |                                  |
| 7           | ✓     | ✓        | -                             | 75% | 50%        |  |                                  |
| 8           | ✓     | ✓        | 75%                           | 75% | 50%        |  |                                  |
| 9           |       | ✓        | -                             | 25% | 75%        |  |                                  |

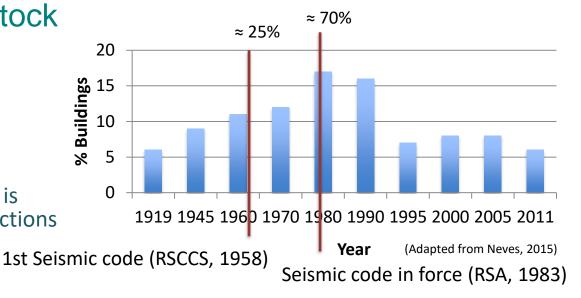
#### Mitigation Framework; Cost Effectiveness Analysis





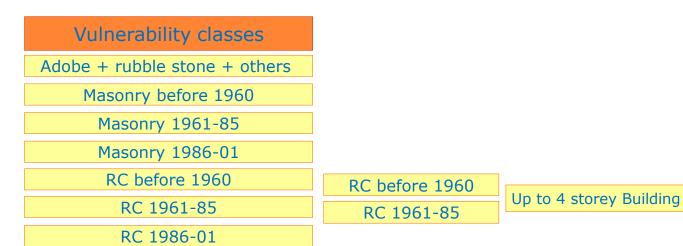

# Case Study Building Stock

Censos 2011:97% of building stock < 5 storeys</li>


≈ 70 % of building stock was not designed against earthquakes and is potentially vulnerable to seismic actions

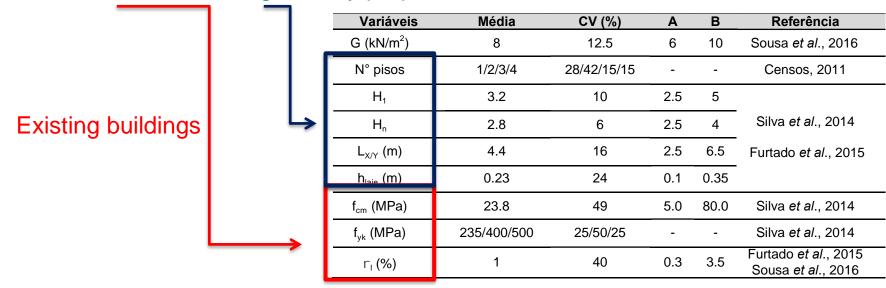


# Case Study Building Stock


Censos 2011:97% of building stock < 5 storeys</li>

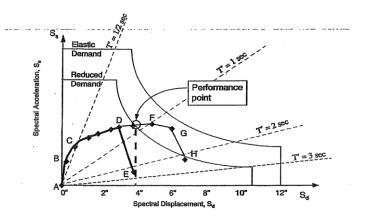
≈ 70 % of building stock was not designed against earthquakes and is potentially vulnerable to seismic actions




#### Vulnerability and inventory definition

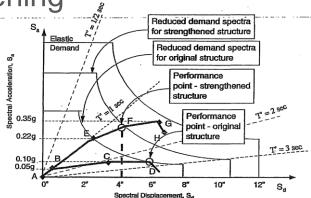
• 7 vulnerability classes x 7 nº floors

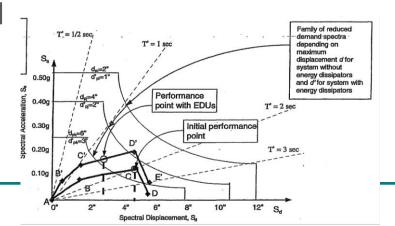



#### Case study: RC Portuguese pre-seismic code building stock up to 4 storey

#### Variables of material and geometry properties




# Seismic risk mitigation strategies


- Enhancing deformation capacity
  - FRP and steel jacketing

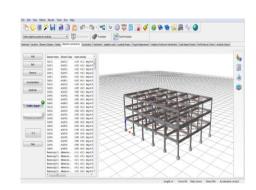


System strengthening and stiffening

- RC jacketing
- Bracing
- Reinforcing infill walls
- Reducing earthquake demand
  - Base isolation
  - Energy dissipation






# Seismic risk mitigation strategies

- Enhancing deformation capacity
  - FRP and steel jacketing
- System strengthening and stiffening
  - RC jacketing
  - Bracing
  - Reinforcing infill walls
- Reducing earthquake demand
  - Base isolation
  - Energy dissipation

#### Outline

- Thesis Review
- Accomplished Tasks
- Cost Benefit Alternative

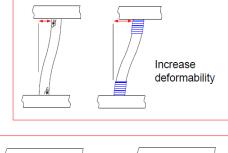
- Seismostruct modeling 200 buildings in each direction of X and Y
- Pushover analysis and Fragility curves

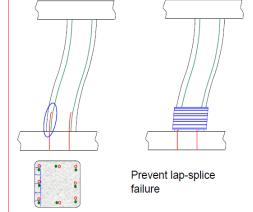


 Seismostruct modeling 200 buildings in each direction of X and Y

- The fact two first back bins bin to 190

  | Committee the control of the control o
- Pushover analysis and Fragility curves
- Comparison of results with original LNECLOSS
  - Retrofitting solution :
    - □ RC Jacketing 2 level of reinforcement
    - Steel Jacketing 2 level of Confinement
    - ☐ FRP 2 level of reinforcement
    - Bracing 3 level of reinforcement
    - Infill Walls with shotcreet

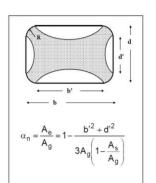

 Seismostruct modeling 200 buildings in each direction of X and Y

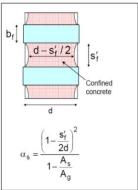

- The fact two flows back, but has two two controls of the control o
- Pushover analysis and Fragility curves
- Comparison of results with original LNECLOSS
  - Retrofitting solution :
    - □ RC Jacketing 2 level of reinforcement
    - ☐ Steel Jacketing 2 level of Confinement
    - ☐ FRP 2 level of reinforcement
    - Bracing 3 level of reinforcement
    - Infill Walls with shotcreet

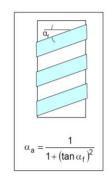
#### **Retrofit Solution**

# Steel/FRP Jacketing Considering Confinement

# Increase strength




#### **Effectiveness Confinement**







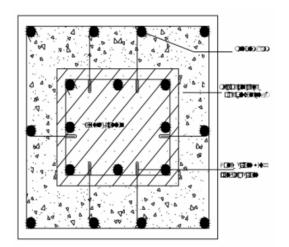


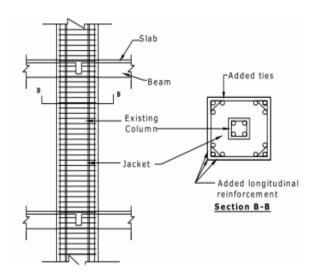
T. TRIANTAFILLOU

Confinement factor varies: 1.50, 2.00

results in 2 scenario of Retrofit Solution

#### **Retrofit Solution**


# Technique for Column Jacketing

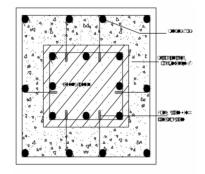

Properties of Jacket

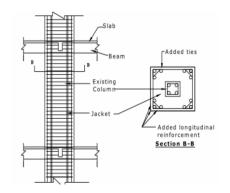
(Shri. Pravin B. Waghmare, 2011)

Percentage of steel in the jacket between 0.015and 0.04 of jacket Area

Minimum width of jacket 10 cm for concrete cast-in-place

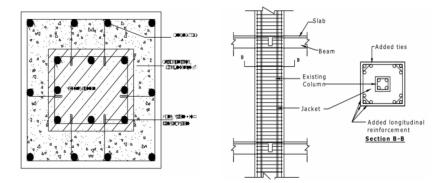






| Properties of jackets      | Match with the concrete of the existing structure.                                                                                  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                            | • Compressive strength greater than that of the existing structures by 5 N/mm <sup>2</sup> or a                                     |
|                            | least equal to that of the existing structure.                                                                                      |
| Minimum width of jacket    | 10 cm for concrete cast-in-place and 4 cm for shotcrete.                                                                            |
|                            | If postible, four-sided jacket should be used.                                                                                      |
|                            | <ul> <li>A morpolithic behaviour of the composite column should be assured.</li> </ul>                                              |
|                            | <ul> <li>Narrow gap should be provided to prevent any possible increase in flexural capacity.</li> </ul>                            |
| Minimum area of            | • 3Af <sub>y</sub> , where, A is the area of contact in cm <sup>2</sup> and f <sub>y</sub> is in kg/cm <sup>2</sup>                 |
| longitudinal reinforcement | Spacing should not exceed six times of the width of the new elements (the jacket in                                                 |
|                            | the case) up to the limit of 60 cm.                                                                                                 |
|                            | <ul> <li>Percentage of steel in the jacket with respect to the jacket area should be limited<br/>between 0.015 and 0.04.</li> </ul> |
|                            | At least, 12 mm bar should be used at every corner for a four sided jacket.                                                         |
| Minimum area of transvers  | Designed and spaced as per earthquake design practice.                                                                              |
| reinforcement              | Minimum bar diameter used for ties is not less than 10 mm or 1/3 of the diameter of                                                 |
|                            | the biggest longitudinal bar.                                                                                                       |
|                            | <ul> <li>The ties should have 135-degree hooks with 10bar diameter anchorage.</li> </ul>                                            |

Jacketing factor varies: 2R, 3R results in 2 scenario of Retrofit Solution

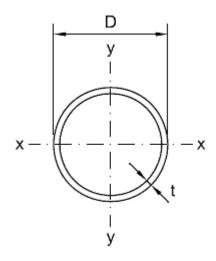
# System strengthening and stiffening: RC jacketing of columns


- Overview of strategy
  - New concrete
    - Additional 10 cm thickness
    - C25/30
    - 2,5 cm concrete cover



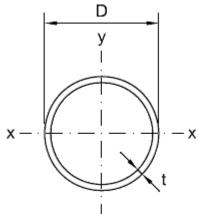


# System strengthening and stiffening: RC jacketing of columns


- Overview of strategy
  - New concrete
    - Additional 10 cm thickness
    - C25/30
    - 2,5 cm concrete cover



- 2 different RC jacketing solutions
  - Jacketing 2: 2% ratio of reinforcement area (wrt new Ac)
  - Jacketing 3: 3% ratio of reinforcement area (wrt new Ac)
  - Applied by shotcreet or cast in place

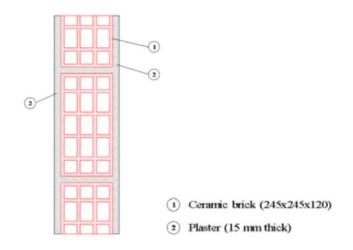

#### **Retrofit Solution**

- Bracing retrofitting strategy
  - 3 different braces were considered
    - Steel members with circular hollow sections (CHS)
    - Steel S275

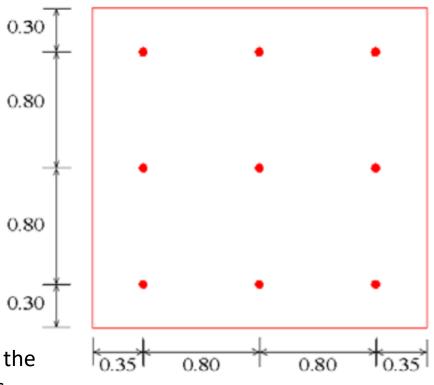


#### **Retrofit Solution**

- Bracing retrofitting strategy
  - 3 different braces were considered
    - Steel members with circular hollow sections (CHS)
    - Steel S275




- Bracing 3: Designed so that the resulting axial force in columns equals the columns axial resistance
  - D = 76 mm; t = 4 mm
- Bracing 2 : Designed to a axial force value equal to 66% of Bracing 3 design force
  - D = 60 mm; t = 3.2 mm
- Bracing 1 : Designed to a axial force value equal to 33% of Bracing 3 design force
  - D = 34 mm; t = 3.2 mm


#### Structural InfillWall



properties of the infills were calibrated based on the ICONS experimental test, and are similar to the ones used in Portugal.



A light connection (clamps) between the shotcrete layer and the masonry walls was provided in nine points

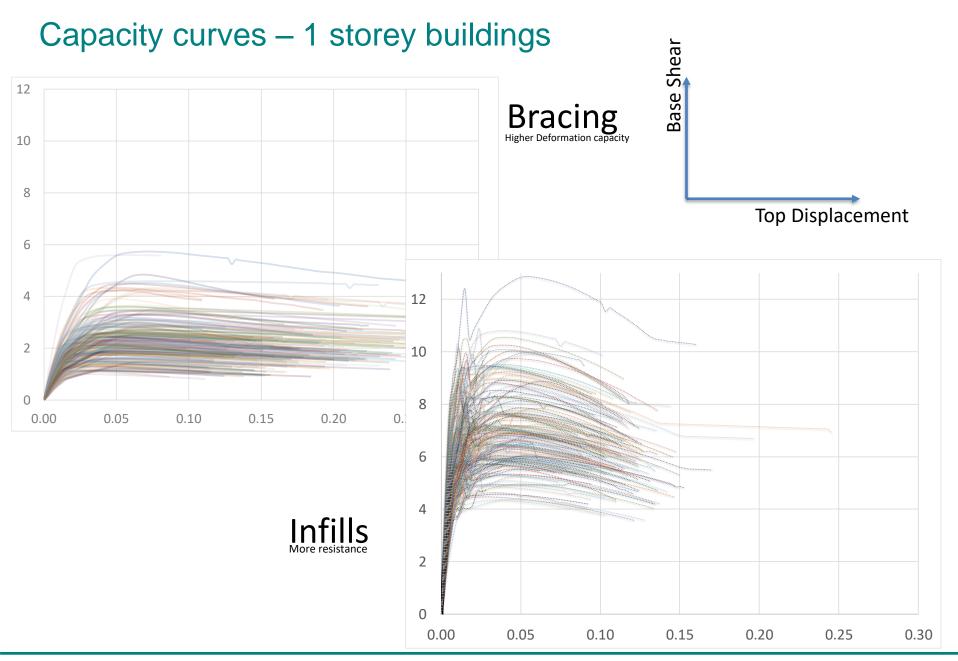


# Structural InfillWall



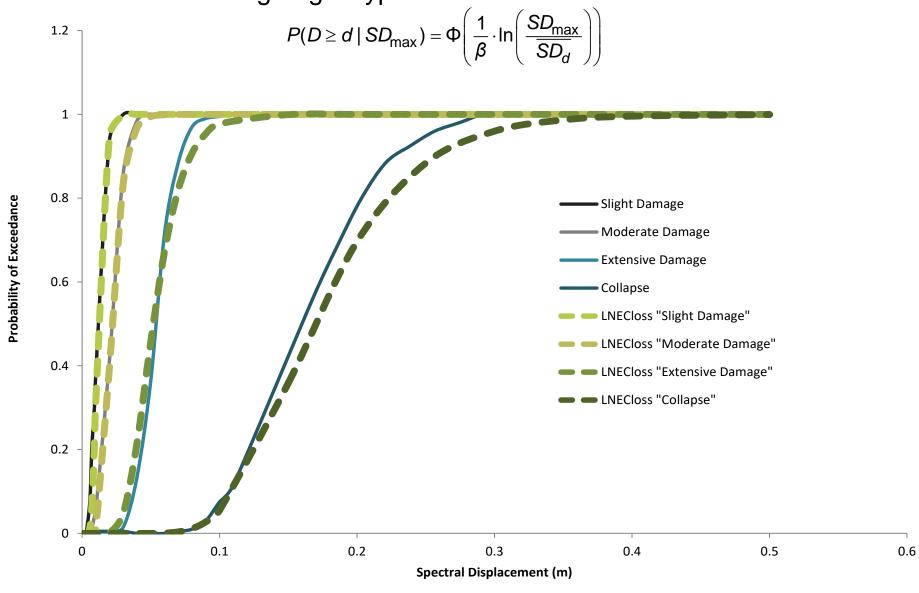




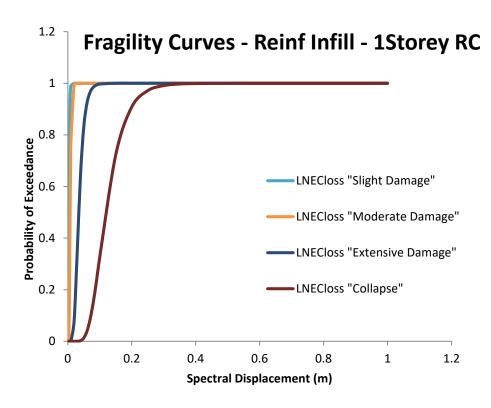




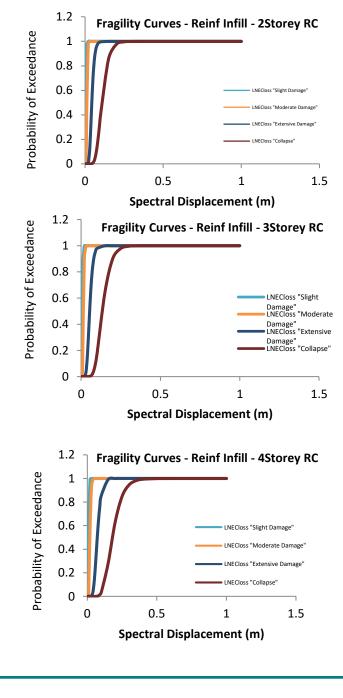


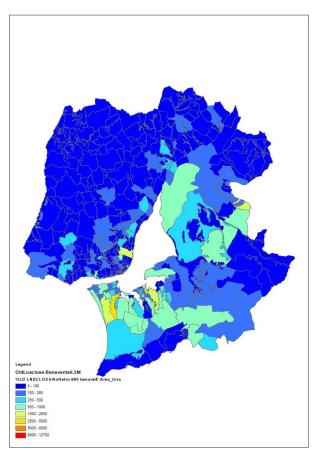


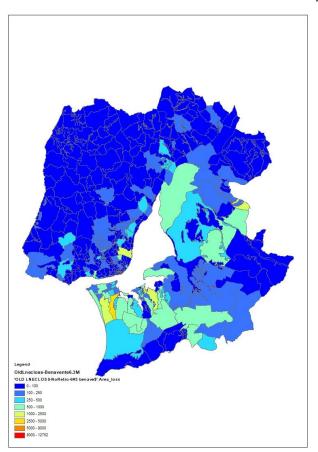

#### Fragility curves for 1 storey buildings

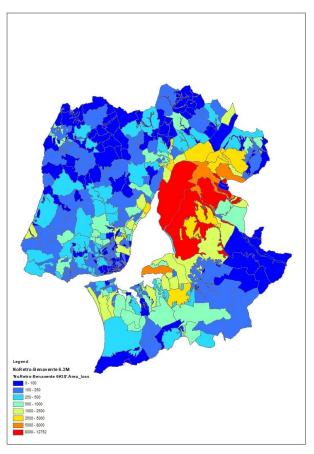

Using LogN hypothesis vs Numerical Model



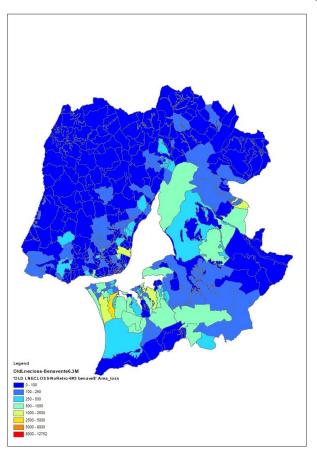

# Fragility curves for infills strategy

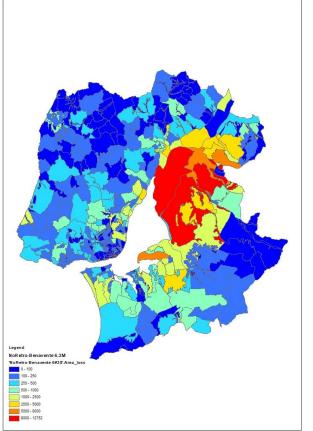


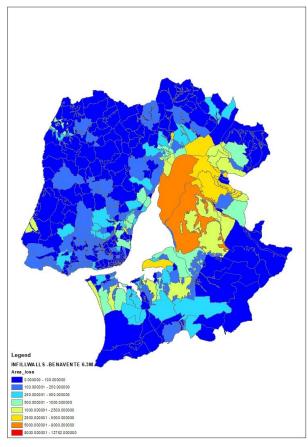

$$P_{D}(D \ge d \mid Sd) = \Phi \left[ \frac{1}{\beta_{d}} \ln \left( \frac{Sd}{\langle Sd_{d} \rangle} \right) \right]$$



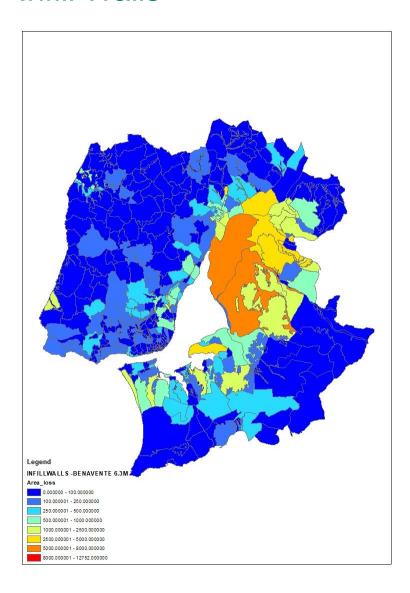

Comparison of Infill results with original LNECLOSS
 Lossed area: Graphical representation- 6,3M Benavente



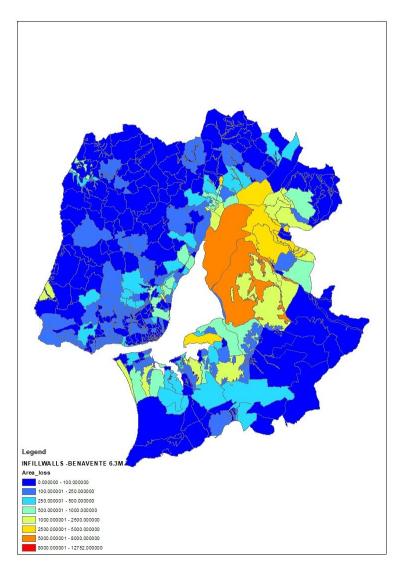


 Comparison of Infill results with original LNECLOSS Lossed area: Graphical representation- 6,3M Benavente







 Comparison of Infill results with original LNECLOSS Lossed area: Graphical representation- 6,3M Benavente







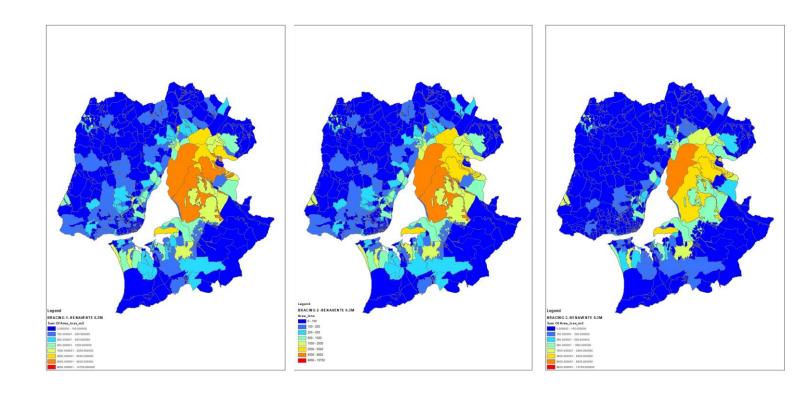

# **Infill Walls**



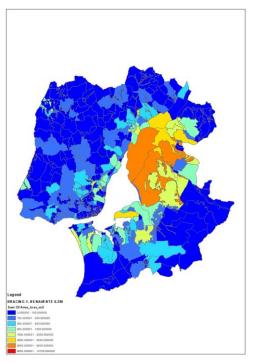
#### **Infill Walls**

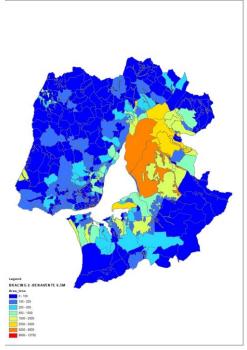


#### Comparison of results with original LNECLOSS


Lossed area: Graphical representation

| Infill Walls                  |               |          |           |          |  |  |
|-------------------------------|---------------|----------|-----------|----------|--|--|
| Sum of Area_Loss(m^2)         | Column Labels |          |           |          |  |  |
|                               |               | Interm.  |           | Grand    |  |  |
| Row Labels                    | Hard soil     | soil     | Soft soil | Total    |  |  |
| Masonry                       | 202878.1804   | 285694   | 168025.5  | 656597.6 |  |  |
| RC Medium Ductility           | 22236.99962   | 32795.56 | 41564.55  | 96597.12 |  |  |
| RC Non ductil - low rise      | 10360.53414   | 30561.57 | 12733.48  | 53655.59 |  |  |
| RC Non ductil - med/high rise | 7631.965466   | 7691.428 | 10111.56  | 25434.95 |  |  |
| Grand Total                   | 243107.6796   | 356742.5 | 232435.1  | 832285.3 |  |  |


| No Retro                      |               |          |           |          |  |  |
|-------------------------------|---------------|----------|-----------|----------|--|--|
| Sum of Area_Loss(m^2)         | Column Labels |          |           |          |  |  |
|                               |               | Interm.  |           | Grand    |  |  |
| Row Labels                    | Hard soil     | soil     | Soft soil | Total    |  |  |
| Masonry                       | 202878.1804   | 285694   | 168025.5  | 656597.6 |  |  |
| RC Medium Ductility           | 22236.99962   | 32795.56 | 41564.55  | 96597.12 |  |  |
| RC Non ductil - low rise      | 36584.40222   | 32218.42 | 125798.4  | 194601.2 |  |  |
| RC Non ductil - med/high rise | 7631.965466   | 7691.428 | 10111.56  | 25434.95 |  |  |
| Grand Total                   | 269331.5477   | 358399.4 | 345499.9  | 973230.9 |  |  |


Reduction achieved with mitigation

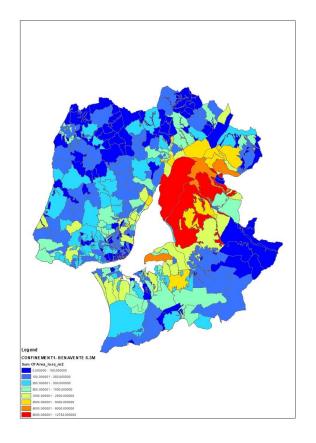
# Bracing Level1 VS Level2 VS Level3

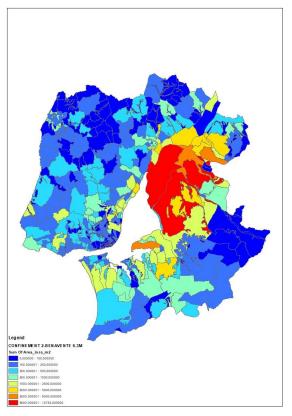


# Bracing Level1 VS Level2 VS Level3

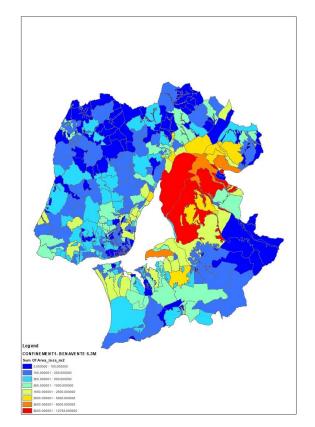


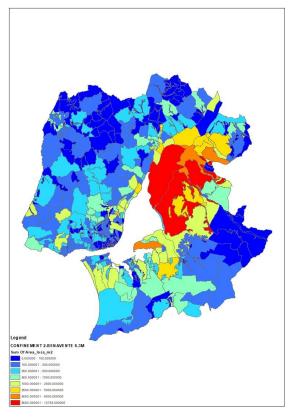



| 900,00001 - 900 00000<br>900,00001 - 1272,90000 |
|-------------------------------------------------|
|-------------------------------------------------|


|                               | Bracing1    |           |           |          |
|-------------------------------|-------------|-----------|-----------|----------|
| Sum of Area_Loss(m^2)         |             | Column La | bels      |          |
|                               |             | Interm.   |           | Grand    |
| Row Labels                    | Hard soil   | soil      | Soft soil | Total    |
| Masonry                       | 202878.1804 | 285694    | 168025.5  | 656597.6 |
| RC Medium Ductility           | 22236.99962 | 32795.56  | 41564.55  | 96597.12 |
| RC Non ductil - low rise      | 18670.54799 | 19532.8   | 66373.11  | 104576.5 |
| RC Non ductil - med/high rise | 7631.965466 | 7691.428  | 10111.56  | 25434.95 |
| Grand Total                   | 251417.6935 | 345713.8  | 286074.7  | 883206.2 |

|             | bracing2        |           |                |  |  |  |  |
|-------------|-----------------|-----------|----------------|--|--|--|--|
|             | Column La       | bels      |                |  |  |  |  |
| Hard soil   | Interm.<br>soil | Soft soil | Grand<br>Total |  |  |  |  |
| 202878.1804 | 285694          | 168025.5  | 656597.6       |  |  |  |  |
| 22236.99962 | 32795.56        | 41564.55  | 96597.12       |  |  |  |  |
| 17379.05655 | 21680.61        | 66616.8   | 105676.5       |  |  |  |  |
| 7631.965466 | 7691.428        | 10111.56  | 25434.95       |  |  |  |  |
| 250126.202  | 347861.6        | 286318.4  | 884306.2       |  |  |  |  |

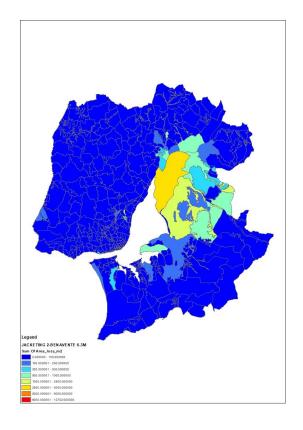

| Bracing3    |           |           |                |  |  |  |
|-------------|-----------|-----------|----------------|--|--|--|
|             | Column La | bels      |                |  |  |  |
| Hard soil   | Interm.   | Soft soil | Grand<br>Total |  |  |  |
| 202878.1804 | 285694    | 168025.5  | 656597.6       |  |  |  |
| 22236.99962 | 32795.56  | 41564.55  | 96597.12       |  |  |  |
| 8538.27045  | 13170.78  | 45848.58  | 67557.63       |  |  |  |
| 7631.965466 | 7691.428  | 10111.56  | 25434.95       |  |  |  |
| 241285.4159 | 339351.7  | 265550.2  | 846187.3       |  |  |  |
|             |           |           |                |  |  |  |

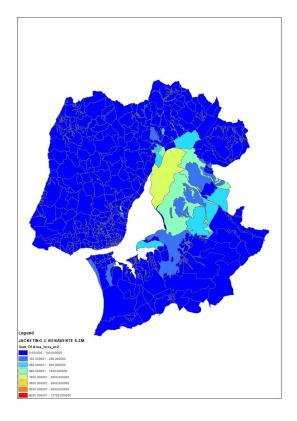

# FRP/STEEL JACKETING confinement Level1 VS Level2



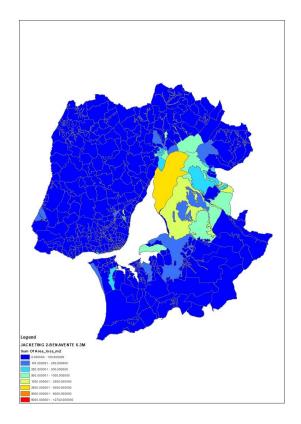


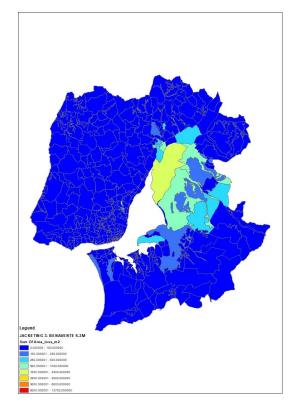
# FRP/STEEL JACKETING confinement Level1 VS Level2




|                               |            | Confine      | mont 1    |                    |
|-------------------------------|------------|--------------|-----------|--------------------|
|                               |            | Comme        | illelit 1 |                    |
| Sum of Area_Loss(m^2)         | Column Lab | els          |           |                    |
| Row Labels                    | Hard soil  | Interm. soil | Soft soil | <b>Grand Total</b> |
| Masonry                       | 202878.2   | 285694       | 168025.5  | 656597.6           |
| RC Medium Ductility           | 22237      | 32795.56     | 41564.55  | 96597.12           |
| RC Non ductil - low rise      | 42879.94   | 36054.89     | 125971.4  | 204906.2           |
| RC Non ductil - med/high rise | 7631.965   | 7691.428     | 10111.56  | 25434.95           |
| Grand Total                   | 275627.1   | 362235.8     | 345673    | 983535.9           |


| Confinement 2 |              |           |             |  |  |  |
|---------------|--------------|-----------|-------------|--|--|--|
| Column Label  | S            |           |             |  |  |  |
| Hard soil     | Interm. soil | Soft soil | Grand Total |  |  |  |
| 202878.2      | 285694       | 168025.5  | 656597.6    |  |  |  |
| 22237         | 32795.56     | 41564.55  | 96597.12    |  |  |  |
| 40614.82      | 34633.72     | 122151.4  | 197400      |  |  |  |
| 7631.965      | 7691.428     | 10111.56  | 25434.95    |  |  |  |
| 273362        | 360814.7     | 341853    | 976029.7    |  |  |  |
|               |              |           |             |  |  |  |


# RC jacketing 2R VS 3R





# RC jacketing 2R VS 3R





|                               | Jacketing 2R |              |           |                    |
|-------------------------------|--------------|--------------|-----------|--------------------|
| Sum of Area_Loss(m^2)         | Column Lab   | els          |           |                    |
| Row Labels                    | Hard soil    | Interm. soil | Soft soil | <b>Grand Total</b> |
| Masonry                       | 202878.2     | 285694       | 168025.5  | 656597.6           |
| RC Medium Ductility           | 22237        | 32795.56     | 41564.55  | 96597.12           |
| RC Non ductil - low rise      | 386.1703     | 4387.864     | 13021.96  | 17796              |
| RC Non ductil - med/high rise | 7631.965     | 7691.428     | 10111.56  | 25434.95           |
| Grand Total                   | 233133.3     | 330568.8     | 232723.6  | 796425.7           |

| Jacketing 3R |              |           |             |  |  |  |  |
|--------------|--------------|-----------|-------------|--|--|--|--|
| Column Label | S            |           |             |  |  |  |  |
| Hard soil    | Interm. soil | Soft soil | Grand Total |  |  |  |  |
| 202878.2     | 285694       | 168025.5  | 656597.6    |  |  |  |  |
| 22237        | 32795.56     | 41564.55  | 96597.12    |  |  |  |  |
| 133.9558     | 2561.126     | 7618.544  | 10313.63    |  |  |  |  |
| 7631.965     | 7691.428     | 10111.56  | 25434.95    |  |  |  |  |
| 232881.1     | 328742.1     | 227320.1  | 788943.3    |  |  |  |  |

#### Outline

- Thesis Review
- Accomplished Tasks
- Cost Benefit Alternative

# Cost-Benefit analysis

#### Benefits

 Increased value of the building due to its improved seismic performance (B)

#### Costs

- Costs of implementing mitigation strategy (C<sub>MS</sub>)
- Damage repair costs (C<sub>RP</sub>)
- Demolition and reconstruction costs (C<sub>D</sub> + C<sub>RC</sub>)
- Costs of relocation of users (C<sub>RII</sub>)
- Costs of loss revenue (C<sub>LR</sub>)
- Costs of fatalities/injuries compensations (C<sub>FIC</sub>)

**–** ...

# Cost-Benefit analysis

Cost function

$$C_{TOT} = C_{MS} + C_{RP} + (C_D + C_{RC}) + C_{RU} + C_{LR} + C_{FIC}$$

 In order to compare costs at different times, all values must be adjusted to a reference year prices, multiplying the costs by

$$\frac{1}{\left(1+r\right)^{\Delta T}}$$

- r represents the discount rate [2% to 4%]
- $\Delta T$  is given by  $T_i$   $T_r$ , where  $T_i$  represents the year of cost i and  $T_r$  represents the reference year

