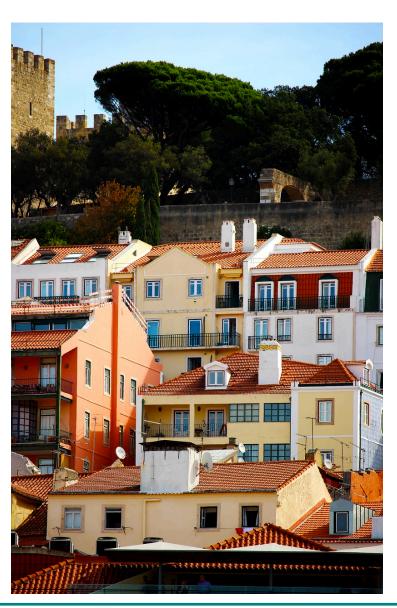
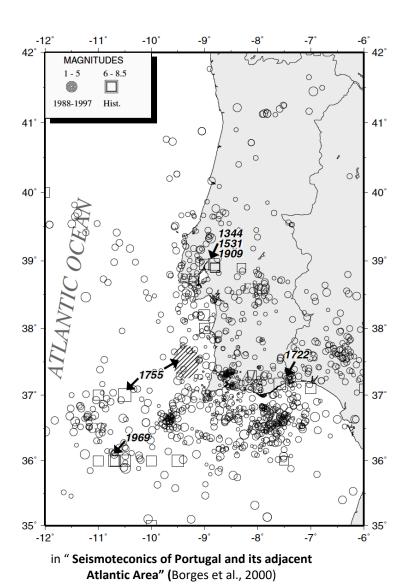
EFFECT OF EARTHQUAKE RISK ON THE REAL ESTATE MARKET

An application to Lisbon

João Fragoso Januário





Contents:

- Introduction
- Objectives
- State-Of-The-Art
- Exploratory Data Analysis (EDA)
- Key Points
- Next Steps

- Lisbon has become one the most attractive markets to investors
- Golden Visa, Safe, Tech-Friendly
- National and Foreign Investors
- Largest store of value

- 2 major earthquakes: 1531 and 1755
- Located near the Azores-Gibraltar Fault
- Moderate seismicity
- 1755 earthquake reached X in the Modified Mercalli Intensity Scale according to records

How is risk perceived? What would be its impact?

- Location, location
- Number of rooms, useful area, condition
- Nearby area

- Largest storage of value -> Economic loss
- Price should reflect risk assessment
- How is it quantified? Is it being taken into account?

Who cares about risk?

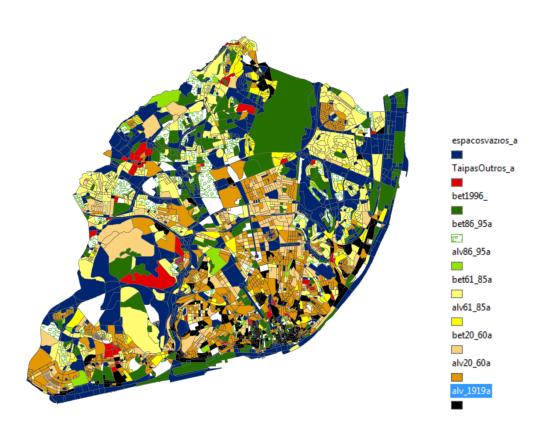
- Home buyers
- Investors and Developers
- Insurance Companies
- Policymakers

The objectives are twofold

1

- Understand how the real estate market values natural hazard risks
- Quantify the risk perception by investors and its impact on property prices

2


 Develop a cost-impact function to determine its impact on the real estate market in Lisbon

3 main phases

Define a natural hazard risk index (based on the seismic risk) that can be applied to the city of Lisbon. The seismic risk should include both Index direct consequences, such as structural damage or collapse due to soil vibration and displacement, and indirect consequences, in particular tsunami and fire. Direct revealed preference by developing a hedonic pricing and information about 50.000 real estate transaction in Lisbon (2008-2018) Reveled Indirect revealed preference by analyzing the risk premium charged; **Preferences** Structured interviews will also be used to identify risk perception and willingness-to-pay for real estate with less exposure to risk Build a cost-impact function: characterize the existing building stock in Lisbon, and, based on the potential impact of a natural hazard, calculate Value-at-risk the expected loss of value for the real estate market.

EFFECT OF EARTHQUAKE RISK ON THE REAL ESTATE MARKET

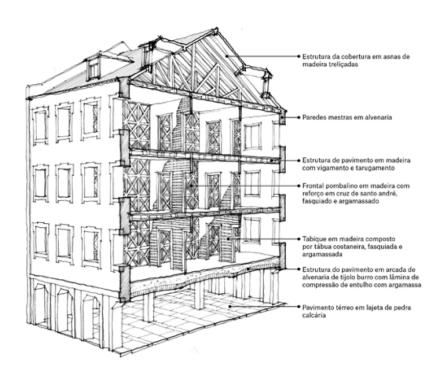
in "Estimativa de cenários de danos para a cidade de Lisboa" (P. Teves Costa et al, 1999)

Building stock composed by different types of construction:

- Pré-pombalinos (< 1755);
- Pombalinos (> 1755);
- Gaioleiros (late XIX century);
- Transition (wood/masonry and reinforced concrete);
- Reinforced Concrete (RC) (< 1985)
- Modern RC;

Effect of earthquake risk on the real estate market – an application to Lisbon Literature Review

Lisbon City Council


- Working papers on the seismic risk;
- Data on building stock and its vulnerability to risk;
- Do not model the economic impact or risk perception;

2. Bento R, Simões A, Lagomarsino S

 Seismic performance-based assessment of "gaioleiro" buildings;

Other authors

- Analysis of seismic reinforcement and its costs;
- Specific building types;

Pombalino building type. in "Reabilitação e conservação do património Arquitectónico", Cadernos Técnicos, Ordem dos Arquitectos

Literature Review

1 Friedman (1972)

"Insurance and the natural hazards"

- Assessing value-at-risk
- Data on the susceptibility of the structures and its cost of repair;
- Knowledge on potential hazards;
- Past experience is not a good indicator; Types of construction, building codes and property market value;

2 Willis (1997)

"The Impact of Earthquake Risk on Housing Markets: Evidence from Tehran Real Estate Agents"

- market is sensitive to seimic risk;
- Risk awareness improves this sensitivity;
- Structured interviews with Real Estate agents;
- Variance in willingness-to-pay

3 Kim (2017)

"Estimating Damage Costs from Natural Disasters in Korea"

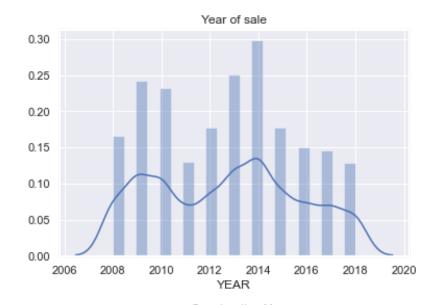
- Uses both personal and local income as socialeconomic factors; Higher incomes may lead to better prevention to natural disasters;
- Average % of damage cost by building type;
- Uses MLR to model cost

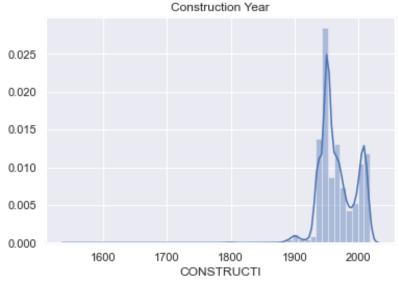
- Dataset of 8726 property sales
- 61 Variables:

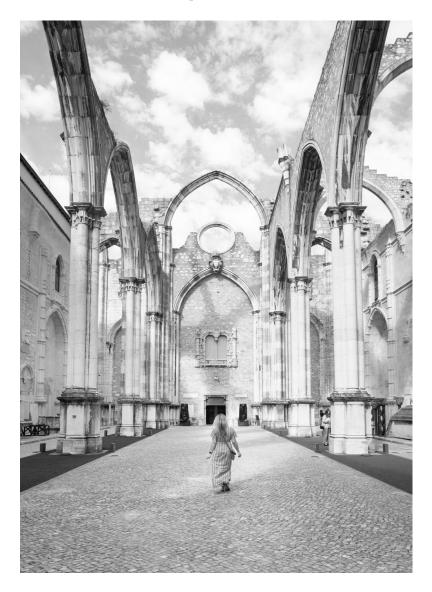
Location

Year of sale

Price


Construction year


Type of property


Number of rooms and Area

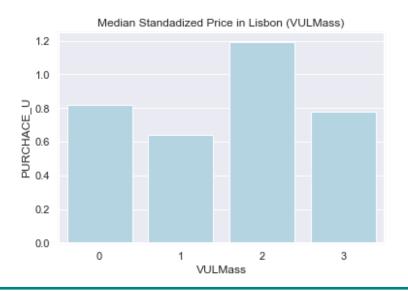
. .

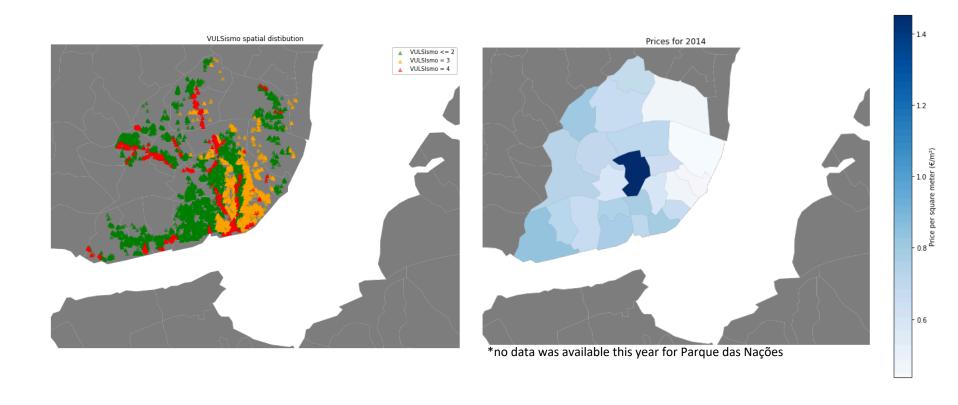
Vulnerability to floods (VULInund) Vulnerability to earthquakes (VULSismo) VULMass

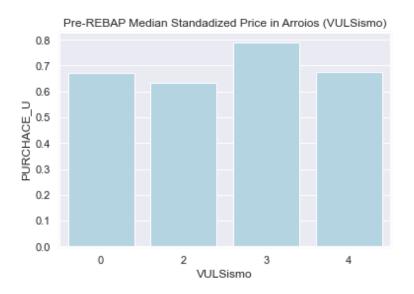
Parishes	
Arroios	833
Avenidas Novas	808
Santa Maria Maior	738
Estrela	623
Benfica	603
Santo António	530
Campo de Ourique	527
Misericórdia	489
Ajuda	377
Olivais	368
Alcântara	367
Lumiar	347
São Vicente	332
Penha de França	310
Belém	285
Alvalade	276
São Domingos de Benfica	208
bao bomingob ac beninca	
Carnide Carnide	169
	169 146
Carnide	
Carnide Santa Clara	146
Carnide Santa Clara Areeiro	146 138

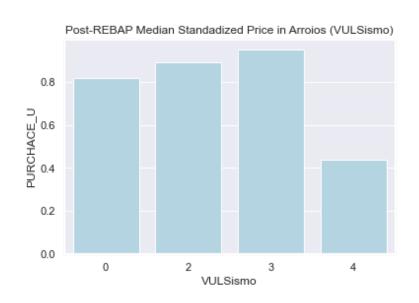

	Brief	Analysis of	VULInund
VU	LInund	Percentage	
0	6119	70.123768	
1	1443	16.536787	
3	833	9.546184	
2	331	3.793262	
	Brief	Analysis of	WIII.Sismo
771	LSismo	_	VOLDIBINO
2	3504	40.155856	
3	1932	22.140729	
1	1459	16.720147	
0	1029	11.792345	
4	802	9.190924	
	Brief	Analysis of	VIII.Mass
MI.	LMass	_	V 0211000
0	8551	J -	
2	73		
1	65	0.744900	
3	37	0.424020	


PARISH (VULSismo)	
Santa Maria Maior	20.007315
Arroios	14.374543
São Vicente	11.082663
Penha de França	9.473299
Misericórdia	6.949525


PARISH (VULInund)	
Santa Maria Maior	45.138055
Arroios	12.244898
Estrela	11.044418
Misericórdia	6.002401
Avenidas Novas	5.162065


PARISH (VULMass)	
Santa Maria Maior	67.567568
Penha de França	16.216216
Misericórdia	5.405405
Marvila	2.702703
Campo de Ourique	2.702703

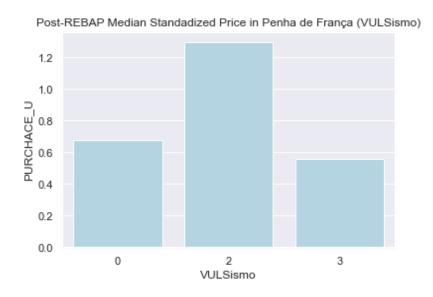

REBAP¹ (1970) Impacts

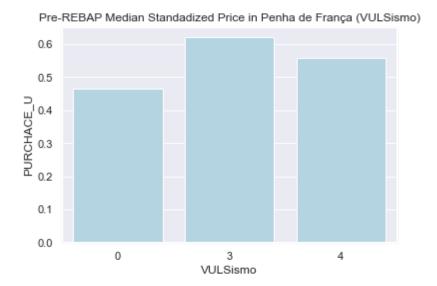

Arroios

Sample size: 71 Pre-REBAP (1957-1970) and 43 Post-REBAP (1970-1983)

Class 3 – 30% higher in Post-REBAP

Class 4 – 36% lower in Post-REBAP


¹⁻ http://www-ext.lnec.pt/LNEC/DE/NESDE/divulgacao/REBAP.html


REBAP (1970) Impacts

Penha de França

Sample size: 56 Pre-REBAP (1957-1970) and 17 Post-REBAP (1970-1983)

Class 3 – 8% higher in Post-REBAP

Key Points

- Real Estate is an important store of value;
- Seismic risk is one of the main threats (and it is not negligible in Lisbon);
- Pricing seems not to account for risk which can be leading to a market distortion;

Next Steps

Index and Value-at-risk

- Gather more data on the risk by building type (linked to the construction year) to add to the database;
- Build an index based on location and building type;
- Build a cost-impact function;

Revelead Preferences

- Structured Interviews
- Regression Analysis
 - Spatial Regression models

EFFECT OF EARTHQUAKE RISK ON THE REAL ESTATE MARKET

An application to Lisbon

Thank you!

