Infrastructures and Geotechnics

Risk management applied to cultural heritage buildings. The effect of soil settlements and vibrations induced by underground structures.

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-September 8, 2020

Underground structures in urban environment Cultural heritage buildings

- Historical constructions of high social and cultural value extremely susceptible to damage and deterioration due to weathering and environmental actions • Low mechanical properties and brittle failure
- Emerging demand on underground constructions aspects of efficacy, time transferring needs and obstruction in over-concentrated overground urban networks
- Cumulative damage propagation in structural and non-structural elements • assessment through monitoring and experimental strategies, employment of appropriate mitigation techniques

Research activities: Settlements and cyclic low-stress rate fatigue tests on cultural heritage masonry buildings

Long-term effects on durability have not been fully evaluated and many times are not accounted in the assessment process of historical masonry buildings

Objectives

- Long term performance and stages of fatigue deterioration under lowmedium rate strain evolution and high stress levels.
- Field monitoring protocols and methods for induced vibrations in historic masonry structures
- Application of damage detection ND strategies for monitoring damage and stiffness degradation in structural elements (vibrations + settlements)
- Damage for elements of architecture; i.e. frescos/plaster
- In-plane capacity of URM perforated walls (piers and spandrels) and issues on reparability and retrofitting, under differential settlements

Research activities: Settlements and cyclic low-stress rate fatigue tests on cultural heritage masonry buildings

Research activities: Settlements and cyclic low-stress rate fatigue tests on cultural heritage masonry buildings

Research activities: Settlements and cyclic low-stress rate fatigue tests on cultural heritage masonry buildings

Research activities: Settlements and cyclic low-stress rate fatigue tests on cultural heritage masonry buildings

Material characterization of simulated historic masonry

Masonry constituents • wallets • repair material

Field monitoring campaign

Induced groundborne vibrations from underground railway traffic Cultural heritage buildings

Structural monitoring of induced vibrations

Groundborne vibrations • underground railway traffic

Karanikoloudis, G., Lourenço, P.B., Mendes, N., Bile J. S., Boroschek, R. (2020) Monitoring of induced groundborne vibrations in cultural heritage buildings. Miscellaneous errors and aliasing through integration and filtering, International Journal of Architectural Heritage. (DOI: 10.1080/15583058.2020.1802532)

Guidelines on: Measurement / Instrumentation / Processing / Evaluation

Type and condition of structure	Vibration source/type	Description		Dominant vibration frequency (Hz)	PPV (mm/s)	Indicator	Reference
Sensitive structures of high intrinsic value		At foundation level		1-10	3		DIN 4150 3:1999
	Short-term			10-50	3-8	V _{max}	
				50-100	8-10		
		At highest horizontal plane		-	8	V _{max}	Germany
	Long-term	At highest horizontal plane		-	2.5	V _{max}	
Historical buildings or under protection	Occasional	At foundation level		<30	1.5-3		SN 640312
	Frequent			30-60	2-4	$ V_R $	1992
1	1			>60	3-6		Switzerland
				Wave speed (m/s)	_		
Historical buildings under state protection		Vibrations at highest level	Brick	<1600 1600-2100 >2100	0.15 0.15-0.2 0.2	V _{max}	GB/T 50452
	-		Stone	<2300 2300-2900 >2900	0.20 0.20-0.25 0.25	V _{max}	2008 China
			Timber	<4600 4600-5600 >5600	0.18 0.18-0.22 0.22	V _{max}	

Structural monitoring of induced vibrations Groundborne vibrations • underground railway traffic

- Monitoring of metro induced vibrations in three cultural heritage buildings Church of the Angels, in Lisbon ✓
- 1 passing train every 3-5 min
- Use of kinetic quantities
- Response is mass controlled since f_n < f_s
 Attenuation is expected
 Raw signal Detrending
 - Triaxial seismographers with GPS time base Triaxial geophone ✓
- Sampling frequency 1000-2000Hz

Filtering

Processing

Structural monitoring of induced vibrations Church of the Angels, Lisbon

Sidewalk

●W

N-S

Structural monitoring of induced vibrations Church of the Angels, Lisbon

Location	max PPV (mm/s)	max V _R (mm/s)	Frequency content ¹ (Hz)		Spatial wave frequency (Hz)	$\Delta V dB^4$ attenuation
Choir loft Timber floor	0.42	0.44	x-x y-y z-z	30-200 30-200 30-200	76.9 ²	4
Choir loft Facade windows	0.12	0.13	x-x y-y z-z	30-110 30-200 30-200	125 ³	15
Ground floor	0.11	0.12	x-x y-y z-z	30-150 30-160 30-100	66.7 ³	16
Basement	0.27	0.27	x-x y-y z-z	30-160 30-160 30-125	66.7 ²	9
Sidewalk (Ref.)	0.65	0.72	x-x y-y z-z	30-100 30-100 30-100	71.4 ²	0

¹ Refers to the maximum frequency range

² Refers to the confidence interval for 90% probability of exceedance for ppv≥0.05mm/s

³ Refers to the confidence interval for 90% probability of exceedance for ppv≥0.025mm/s

 4 Refers to the maximum velocity vector V_R

Structural monitoring of induced vibrations

Church of the Angels, Lisbon

Coupling recordings with geophones and seismographers

Accelerations: numerical integration of low accuracy -blind processing-

Historic masonry facades Fatigue tests on masonry wallets under diagonal compression

Fatigue tests on masonry wallets under diagonal compression

Fatigue tests on masonry wallets under diagonal compression

Selection of sinusoidal load (amplitude, duration)

Ground borne vibrations: ppv (mm/s) > ppd (mm) > Stress (MPa) > Force (kN)

$$\sigma_c(x,t) = E \frac{\partial}{\partial x} u(x,t) = -\frac{E}{c} \frac{\partial}{\partial t} u(x,t) = \frac{E \omega u_o}{c} \sin(kx - \omega t + \frac{\pi}{2})$$

- Duration: 16h daily train operation
- Number of cycles: 1 train every 5 min > 70.000 trains/year
- Plan: Division of fatigue tests in parts of 150.000 cycles (~20h)
- Specimen: Selection of a ppv level for increasing static loads, until failure

\Box Equivalent ppv ~ ppd ~ σ ~ P adjusted according to stiffness properties

Fatigue tests on masonry wallets under diagonal compression

□ Selection of sinusoidal load (amplitude, duration) Ground borne vibrations: ppv (mm/s) > ppd (mm) > Stress (MPa) > Force (kN)

$$\sigma_c(x,t) = E \frac{\partial}{\partial x} u(x,t) = -\frac{E}{c} \frac{\partial}{\partial t} u(x,t) = \frac{E \omega u_o}{c} \sin(kx - \omega t + \frac{\pi}{2})$$

- Duration: 16h daily train operation
- Number of cycles: 1 train every 5 min > 70.000 trains/year
- Plan: Division of fatigue tests in parts of 150.000 cycles (~20h)
- Specimen: Selection of a ppv level for increasing static loads, until failure

D Equivalent ppv \Leftrightarrow ppd $\Leftrightarrow \sigma \Leftrightarrow$ P adjusted according to stiffness properties

Historic masonry facades Tests of differential settlements on pier and spandrel specimen

Historic masonry facades • Brick masonry piers and spandrels

Reference facade / brick masonry with lime mortar Location: Valladolid, Spain / Construction date: 1908

Historic masonry facades • Brick masonry piers and spandrels

In-plane capacity under differential settlements

Historic masonry facades • Brick masonry piers and spandrels

Repair and retrofit Unity 1 & Unity 2

Consolidation with an injection grout of a lime-based fluid hydraulic binder (M15)

FRCM system (Fibre Reinforced Cementitious Matrix), with mechanical anchors

Historic masonry facades • Brick masonry piers and spandrels

Repair and retrofit Unity 1 & Unity 2

Consolidation with an injection grout of a lime-based fluid hydraulic binder (M15)

FRCM system (Fibre Reinforced Cementitious Matrix), with mechanical anchors

Historic masonry facades • Brick masonry piers and spandrels

Repair and retrofit Unity 1 & Unity 2

Historic masonry facades • Brick masonry piers and spandrels

7 Panair and ratrafit

Timeline

Scheduled completion and submission of the testing and modelling tasks

October 2020	November 2020	December 2020	February 2021	March 2021
<u>Chapter 3</u> Material characterization of simulated historic masonry	<u>Chapter 4</u> Field monitoring campaign of induced groundborne vibrations	<u>Chapter 5</u> Fatigue tests on masonry wallets under diagonal compression	<u>Chapter 6</u> Tests of differential settlements on pier and spandrel specimen. Repair and retrofit applications Submission in ISI journal of <u>Chapter 5</u>	<u>Chapter 7</u> Multitude effects of induced groundborne vibrations and differential settlements in buildings of cultural heritage
				Submission in ISI journal of <u>Chapter 6</u>

Thank you

Acknowledgments

Partly supported by FCT (Portuguese Foundation for Science and Technology) within ISISE project UID/ECI/04029/2013