Risk analysis of transmission lines systems to natural hazards with emphasis on earthquakes and extreme winds

Seismic Collapse Risk of a lattice Transmission Tower

Author: Fábio Paiva (IST)

Supervisors: Prof. Luís Guerreiro (IST) and Prof. Carneiro Barros (FEUP)

universidad de aveiro ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-September 2020

Outline

- Overhead Line System Quick Review of the Case study;
 - Overhead Power Line Layout;
 - Lattice tower description;
- Capacity assessment of a lattice transmission tower
 - Numerical modeling in OpenSees of a Lattice Tower (Update)
 - Hysteretic behavior of a single angle member and a cross-brace panel
 - Pushover analysis under different loading patterns
- Seismic Collapse Risk assessment of a lattice Transmission Tower
 - Assessment of the annual collapse rate as a risk metric
 - Collapse data obtained through an Incremental Dynamic Analysis;
- Conclusions and future developments

Case Study Presentation – Line Layout

Overhead High Voltage Line - Sub-transmission <u>60 kV Line</u> from EDP, DISTRIBUIÇÃO located in the North of Portugal

Overhead Power-Line Layout

Previously RADAR Monitored Tower

Case Study Presentation – 3D View

Overhead High Voltage Line - Sub-transmission <u>60 kV Line</u> from EDP, DISTRIBUIÇÃO located in the North of Portugal

Numerical modeling in OpenSees of a Lattice Tower

- Forced-based elements (FBE) were used for the main members
 - Fiber section were considered to generate the cross section)
 - Three integration points per element
 - **Eight FBE** per member to capture the imperfection (in plane L/500-parabolic shape)
- Gusset plates were modeled **combining elastic Beam-Column** and **FBE** (two integrations points per element)
- The **material model steel02** uniaxial Giuffre Menegotto-Pinto material is used for steel fibers
- **Corotational geometric transformation** was adopted to take into account geometric nonlinearities
- Only **in-plane joint eccentricities** were considered in the modelling

The study ignored possible local buckling effects in the leg member cross sections

- Cross brace joint, modelled with **Equal dof constraints** (translation and torsional dof)
- Gusset Plates (GP) connection modelled as:
 - Assumed as "rigid" elastic beam-column element with 10*A,10*I of the connected member;
 - The **GP modeled** with a **FBE** of **length** 2*thickness_plate and **width** based on Whitmore width (to capture out-plane resistance of the GP);
- Zero length elements were used to simulate the **slippage joint behavior** for the **axial d.o.f.** and for the **rotational d.o.f. a semi-rigid joint with linear behavior (empirical formulation) is adopted**

Hysteretic Behavior of a single angle member

Experimental test features

Member condition:

- Fixed member with angle Section L25*6
- L=1.193 m, KL/r=120, b/t=4
- Steel fy=345MPa; _____

Loading Protocol:

• Formed by two deflection sequence: 1 and 2 Sequence 2:

TENS 1.00 T P/P. SLENDERNESS KL/r =120 0.75 RATIO 2 L 0.50 Specimen TENS COMP 0.25 COMP

Hysteretic Behavior of Bracing members and seismic response of braced frames with different proportions. A.K. Jain, S.C.Goel ,R.D.Hanson , Report no. UMEE 78R3 , 1978.

Experimental Result from literature

Hysteretic Behavior of a single angle member

Hysteretic Behavior of a cross-brace panel

Experimental test features

Member condition:

- Test brace : L127*76x9.5; L/r=198, b/t=13.3 ٠
- Steel fy=352 MPa; E=202 Pa ٠

Seismic Mitigation Technique for Existing Single Storey Steel CBF Structures. T.Morrison, PhD Thesis, McGill University, 2012.

Hysteretic Behavior of a cross-brace panel

OpenSees Model

Model Features:

 In-plane imperfections (w/ parabolic shape e0=L/500 and 8 FBE per member)

-n_{t_fiber}=4; n_{h_fiber}=20;

Steel Menegotto-Pinto material model properties:

- fy=352 MPa; E=202 GPa
- b=0.3% ,R0=20, cR1=0.925, cR2=0.15
- a1=0.39, a2=1.0, a3=0.029,a=1.0

Lateral force vs. displacement hysteretic performance of plain cross brace sample

Loading Patterns Distributions considered for the Pushover Analysis

Pushover Curves-Model with imperfections

Pushover Curves-Model with imperfections

Selection and Scaling of Ground Motion Records

- Assess the **annual rate of collapse** of the isolated tower •
- $\lambda_{collapse} = \int \phi(\frac{\ln(IM_i/\mu)}{\beta}) |d\lambda_{IM}(x)|$

1%/50

2%/50y 5%/50v

10%/50y 30%/50y

3

Selection and Scaling of GM records based on Conditional Mean Spectrum (SelEQ Framework, Macedo 2017) ٠

- Conditional Mean Spectrum for Sa(T1=0.30 s ,5%);
 Median Uniform Hazard Spectrum for different
- Probability of exceedance 10% in 50y \rightarrow T=475 y;
- Soil Type C assumed
- A total of 40 GM with 2 components (NGA West2)
- probability of exceedance obtained from PSHA

Collapse data obtained through an Incremental Dynamic Analysis

Selected IM: Sa(T₁=0.30 s ,5%) in the x direction

Selected EDP: **Maximum Inter-Section drift**: $\theta_{max} = \sqrt{\theta_x^2 + \theta_y^2}$

Other considerations for the Dynamic Analysis:

- Mean properties (JCSS Probabilistic Model code)
- Rayleigh Damping model ($C = \alpha M + \beta K_{ini}$)
 - ξ =5% viscous damping
 - α and β (f₁=3,27 Hz and f₂=13.01Hz)

Collapse data obtained through an Incremental Dynamic Analysis

- Fragility function fitting with the method of moments
- Assumed a lognormal distribution

Assessment of the annual collapse rate as a risk metric

- Fragility function considering additional source of uncertainty
- Model uncertainty assumed at $\beta = 0.2$ based on paper Full scale tests of Transmission Towers Riera, J.D. et al. (1990) – Cigre document

Conclusion and Future Developments

Main Conclusions

The single angle and cross-bracing panel <u>**numerical models**</u> have been capable of simulating the strength and stiffness degradation from experimental results.

Slippage effects produce an *increase in the tower lateral deformation* that is dependent on the load pattern (factor 1.0-2.0) but they do not seem to affect the *ultimate load capacity*. The *triangular load pattern* have shown the better prediction in the obtained maximum inter-section drift when compared with the dynamic analysis results.

The structure in general displays a fragile behavior (overstrength factor very limited). The effect of model uncertainty seems of minor importance in the assessment of the annual rate of collapse for the Earthquake hazard.

Future Developments

Development of **fragility curves** with different procedures for Earthquake and Wind Hazard (more focus given to the Wind Hazard) for the tower+cable system.

Assessment of the **wind risk** of the isolated tower and a simplified "tower+cable" system considering model uncertainties.

Thank you!