RISK-BASED ANALYSIS OF BRIDGE SCOUR PREDICTION

Fourth year workout

Student: Ana Margarida Bento (LNEC - FEUP)

Supervisors: Dr. Teresa Viseu (LNEC), Dr. Lúcia Couto (LNEC) & Dr. João Pedro Pêgo (FEUP)

- 1. Motivation
- 2. Objective and Approaches
- 3. Risk-based Analysis
- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

1. Motivation

- 2. Objective and Approaches
- 3. Risk-based Analysis
- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

Motivation

Bridge scour is widely identified as a major cause of bridge collapses. Over a period of **30 years more than 1000 bridges** have **collapsed** in USA, **60%** of which as **result of scour at the bridge foundation level.**

Schoharie Creek bridge, NY, USA, 1987

Hintze Ribeiro bridge, Portugal, 2001

1. Motivation

2. Objective and Approaches

- 3. Risk-based Analysis
- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

Objective and Approaches

Develop a new and pragmatic **risk-based methodology to evaluate the risks** associated with **scour at bridge foundations** under **clear water and live bed** flow conditions

- 1. Motivation
- 2. Objective and Approaches

3. Risk-based Analysis

- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

Risk-based Analysis (1/7)

Proposed methodology for bridge scouring risk

- Data reliability analysis (hypothesis tests)
- Hydrological modelling (probabilistic approach)
- Maximum discharges for different return periods

Assessing extreme hydrological events

Modelling river behaviour

- Design floods, Digital Elevation Model (DEM) and riverbed material
- Hydraulic modelling and Bridge scour analysis (HEC-RAS + empirical equations)
- Water levels, flow velocities and scour depths

- Foundation depth and bridge vulnerability rating (priority factor)
- Scour risk rating (qualitative assessment)
- Scour depth to foundation depth ratio and susceptibility to scour

Assessing bridge scour risk

Risk-based Analysis (2/7)

Case study bridge selection

new Hintze Ribeiro bridge, Portugal

Risk-based Analysis (3/7)

Assessing extreme hydrological events

Location of the case study, the new Hintze Ribeiro bridge, over the Douro river (Google Earth, n.d.)

Database	Description	Scenarios	15000	<u>'</u>	,	÷ ‡
Mean daily	Sum of the design floods obtained independently for each	0				
	gauging station	00001 ng	- +	+		
	Sum of the maximum annual discharges of the three gauging	1	rge (ı			
	stations	1	ischa	į	İ	
	Sum of the discharges from the three gauging stations and					
	calculation of the maximum annual values	2	E4			
Instantaneous	Sum of the maximum annual discharges of the three gauging	3				
	stations		. 0	Scenario 1	Scenario 2	Scenario 3

Hydrological scenarios considered for Q_{HR} estimation and corresponding box-plot graph

Risk-based Analysis (4/7)

Assessing extreme hydrological events

Risk-based Analysis (4/7)

Assessing extreme hydrological events

Risk-based Analysis (5/7)

Modelling river behaviour

Hydraulic model built within HEC-RAS software

Design	Flow	Flow	Froude	Equivalent	Contraction	Local scour	Total scour
flood	depth	velocity	number	diameter	scour depth	depth	depth (D _T)

Risk-based Analysis (6/7)

Assessing bridge scour risk

Scour risk rating of the new Hintze Ribeiro bridge

Risk-based Analysis (7/7)

Dissemination outcomes

- 1. Motivation
- 2. Objective and Approaches
- 3. Risk-based Analysis
- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

Experimental Work (1/7)

Tilting flume at LNEC 40.7 m long, 2.0 m wide and 1.90 m deep

Upstream view

Inside view

Downstream view

Experimental Work (2/7)

Experimental Campaign

Scour regime	"Clear water" scour condition - Run 1							"Live bed" scour	condition - Run 4	
Oblong pier ID (width)		Pier 11 Pier			Pier 14	Pier 14 Pier 11				Pier 14
Label	Exp. 1U	Exp. 1U Fbed	Exp. 1U Ebed	Exp. 1D	Exp. 1D F bed	Exp. 1D Ebed	Exp. 4U	Exp. 4U Fbed	Exp. 4U Ebed	Exp. 4D
Type of bed	Movable	Fix	ked	Movable	Fix	ted	Movable	Fix	ked	Movable
Characterization	Scour geometry	Flo	OW	Scour geometry	Flo	ow	Scour geometry	Fl	OW	Scour geometry
Flow depth and discharge	х	х	х	х	х	х	х	х	x	х
Point-wise time evolution of scour depth	x	-	-	x	-	-	x	-	-	х
Close-range photogrammetry (3D)	x	-	-	x	-	-	x	-	-	х
Kinect V2 sensor (3D)	х	-	-	x	-	-	x	-	-	х
Underwater monitoring (2D)	*	-	-	х	-	-	**	-	-	***
Downlooking vectrino	-	x	х	-	х	х	-	х	х	-

Fbed = Flat bed; Ebed = eroded bed

Uniform quartz sand $D_{50} = 0.86 \text{ mm}$ $\sigma_D = 1.28$

Pier geometry dimensions (m)						
Oblong bridge pier models	Pier 11	Pier 14				
Width, W	0.110	0.140				
Total length, L	0.433	0.463				
Flat side surface length, L1	0.372	0.380				
Semi-cylindrical surface ratio, R	0.065	0.080				

10 Experiments:

4 Movable bed experiments

6 Fixed bed experiments

Experimental Work (2/7)

Experimental Campaign

Scour regime	"Clear water" scour condition - Run 1							"Live bed" scour condition - Run 4			
Oblong pier ID (width)		Pier 11			Pier 14			Pier 11			
Label	Exp. 1U	Exp. 1U Fbed	Exp. 1U Ebed	Exp. 1D	Exp. 1D F bed	Exp. 1D Ebed	Exp. 4U	Exp. 4U Fbed	Exp. 4U Ebed	Exp. 4D	
Type of bed	Movable	Fix	ed	Movable	Fix	ted	Movable	Fi	xed	Movable	
Characterization	Scour geometry	Flo	ow	Scour geometry	Flo	ow	Scour geometry	Fl	ow	Scour geometry	
Flow depth and discharge	х	х	х	х	х	х	х	х	x	х	
Point-wise time evolution of scour depth	х	-	-	х	-	-	х	-	-	х	
Close-range photogrammetry (3D)	х	-	-	х	-	-	х	-	-	х	
Kinect V2 sensor (3D)	х	-	-	х	-	-	х	-	-	х	
Underwater monitoring (2D)	*	-	-	х	-	-	**	-	-	***	
Downlooking vectrino	-	х	х	-	х	х	-	х	x	-	

Fbed = Flat bed; Ebed = eroded bed

Uniform quartz sand $D_{50} = 0.86 \text{ mm}$ $\sigma_D = 1.28$

Pier geometry dimensions (m) Pier 14 Oblong bridge pier models Pier 11 Width, W0.110 0.140 Total length, L 0.433 0.463 Flat side surface length, L1 0.372 0.380 Semi-cylindrical surface ratio, R 0.065 0.080

10 Experiments:

4 Movable bed experiments

6 Fixed bed experiments

Experimental Work (2/7)

Experimental Campaign

Scour regime		"Clear water" scour condition - Run 1						"Live bed" scour	condition - Run 4	
Oblong pier ID (width)		Pier 11		Pier 14			Pier 11			Pier 14
Label	Exp. 1U	Exp. 1U Fbed	Exp. 1U Ebed	Exp. 1D	Exp. 1D F bed	Exp. 1D Ebed	Exp. 4U	Exp. 4U Fbed	Exp. 4U Ebed	Exp. 4D
Type of bed	Movable	Fix	red	Movable	Fix	ked	Movable	Fix	xed	Movable
Characterization	Scour geometry	Flo	OW	Scour geometry	Flo	ow	Scour geometry	Fl	ow	Scour geometry
Flow depth and discharge	х	х	х	х	х	х	х	х	х	х
Point-wise time evolution of scour depth	х	-	-	х	-	-	х	-	-	х
Close-range photogrammetry (3D)	x	-	-	х	-	-	х	-	-	х
Kinect V2 sensor (3D)	х	-	-	х	-	-	х	-	-	х
Underwater monitoring (2D)	*	-	-	х	-	-	**	-	-	***
Downlooking vectrino	-	х	x	-	х	x	-	x	x	-

Fbed = Flat bed; Ebed = eroded bed

Uniform quartz sand $D_{50} = 0.86 \text{ mm}$

 $\sigma_{\rm D} = 1.28$

10 Experiments:

4 Movable bed experiments

6 Fixed bed experiments

Pier geometry dimensions (m)						
Oblong bridge pier models	Pier 11	Pier 14				
Width, W	0.110	0.140				
Total length, L	0.433	0.463				
Flat side surface length, $L1$	0.372	0.380				
Semi-cylindrical surface ratio, R	0.065	0.080				

Experimental Work (3/7)

Movable bed experiments - Hydraulic conditions

Experimental Work (4/7)

Movable bed experiments - Scour hole morphology

- \Box Temporal evolution of $\mathbf{d_s}$: **Hydrometers** at the pier fronts
- ☐ 3D: **Kinect V2 sensor** vs **Close-range photogrammetry**

☐ **Underwater image processing**: during the scouring process

Experimental Work (5/7)

Experimental Work (6/7)

Fixed bed experiments – Flow field structure

- ☐ Flow discharge control: electromagnetic flowmeter
- ☐ Flow depth control: resistive probes, hydrometers along CIV, and rulers along the lateral glass windows
- ☐ **Instantaneous flow field** in two different moments: (i) at *fixed flat bed and* (ii) at a fixed eroded bed

Moving carriage for Vectrino at CIV, vectrino and velocity distribution at the approach section

Experimental Work (7/7)

Dissemination outcomes

- 1. Motivation
- 2. Objective and Approaches
- 3. Risk-based Analysis
- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

Numerical Modelling (1/3)

Computational Domain

Experimental Conditions of **Exp. 1D**:

- \rightarrow h = 0.15 m
- ightharpoonup Q = 92.3 L/s

Experimental boundary conditions

Numerical Modelling (2/3)

SSIIM software
Sediment Simulation In Intakes with Multiblock option

Computational	Bed shear	Bed	Turbulence	Vertical cross-	1 st bed cell
domain	stress	roughness	model	sections	height

Numerical Modelling (3/3)

Dissemination outcomes

- 1. Motivation
- 2. Objective and Approaches
- 3. Risk-based Analysis
- 4. Experimental Work
- 5. Numerical Modelling
- 6. Conclusions and Future Works

Conclusions and Future Works (1/3)

Risk-based Analysis

1

Consolidate the connection between the **recent advances on scour depth prediction** and its **applicability on industry** practices

2

Provide oriented measures and practical recommendations for reducing the vulnerability and **enhancing the capacity of infrastructures** in coping with **scouring effects**

3

Apply the proposed methodology into important decision-making process of bridge engineers and designers, and its incorporation into regular bridge inspection schedules

Conclusions and Future Works (1/3)

Experimental Work

1

Detailed 3D models of the geometry and evolution of the scour hole (and deposition zone) in the vicinity of two transitional piers subjected to clear water and live bed scour conditions were achieved with a significant level of accuracy

2.

The **three-dimensional turbulent structure** was also **investigated** using a **high-resolution acoustic velocimeter** at the beginning of the **scouring process and** within the respective **developed scour holes**

3

Development of a methodology capable of performing a continuous monitoring of the sand-pier border at the pier's lateral surface along the scouring process; the 2D bed profiles reveled consistent trends with the scouring development observed for Exp. 1D

Conclusions and Future Works (1/3)

Numerical Modelling

1

In terms of computing the **hydrodynamic variables**, these numerical simulations were **not fully capable** of describing the **complex flow patterns**

2

The results demonstrated that the **calibrated numerical model reproduced**, with acceptable accuracy, the **mechanism of the scour hole formation** in the laboratory environment

3

The adopted CFD tool allowed insights into the mechanism of interaction between **turbulence structures and scour processes** and to increase the number of **experimental observations. In addition, options** for enabling its application for evaluating the scour risk of existing bridges, as well as aiding the design of new bridges **are explored**

