Experimental testing in support of a seismic risk assessment

Gidewon Goitom Tekeste

Laboratório Nacional de Engenharia Civil & University of Aveiro

Outline

- Introduction
- Tools for seismic risk assessment
- Updating fragility curves: methodology
- Effective intensity measure in sequential shake table testing
- > Methodology in updating fragility curves: Bayesian updating
- Case study and results
- Progress chart and hybrid simulation
- Conclusion

Introduction

https://maps.eu-risk.eucentre.it/map/european-exposure-level-1/

Mendes et al., 2014

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Hybrid testing (HS) in seismic risk framework

 Capacity in model structural uncertainties

Steps followed:

- 1. Model structural uncertainties (in numerical sub-structure)
- 2. Use M-DRM meta model to sufficiently reduce the number of hybrid tests
- 3. Apply Entropy principle in order to optimize an empirical PDF function via fractional moments
- ✓ Useful in modeling uncertainty in cases where there is no appropriate numerical model for component

Detailed information can be found on:

Tekeste, G.G., Correia, A.A., Costa, A. G., [2019] "Reliability and global sensitivity analysis in hybrid simulations using surrogate probabilistic modelling", 11° Congresso Nacional de Sismologia e Engenharia Sísmica, IST, Portugal

universidade

Tools for seismic risk assessment: Fragility curves

Challenges and Opportunities of a mixed method from Analytical & shake table tests:

- ✓ How representative is the structure tested and the ground motion used?
- ✓ What are the minimum no. of tests in order to update vulnerability?

universidade

de aveiro

Most importantly, how to maximize the information from experimental tests!

How to update

Update can be based on:

- Engineering Demand
 Parameter (EDP) such as
 drift or observed data
- Input intensity measure (IM) such as Sa(T1)

- Representative input motion (hazard)
- Difficulty in defining increments of input motion in sequential testing (Experimental tests need to be designed carefully)
- Exceedance and updating process can be solely decided based on EDP observed or in combination with IM
- > Past experimental tests may also be readily used for updating if they are representative

universidade

Updating fragility curves: Methodology

Bayesian update:

$$P(Pf_{ds}|Exp) = \frac{P(Exp|Pf_{ds}) \times Pf_{ds}}{\sum_{ds} P(Exp|Pf_{ds}) \times Pf_{ds}}$$

> $L = P(Exp|Pf_{ds})$

Updating fragility curves: Methodology

Unscented Transformation (UT):

- Approximates a distribution by few discrete points & assigns coordinates and weights for each (*Porter K. et al, 2007, ATC-58*)
- Weights are updated by Bayesian method via a likelihood, *L_j*
- Suppose M samples are tested:
 - P samples don't fail at max. EDP
 - K samples fail at an observed EDP &
 - R samples fail but max. EDP is only known

$$L_{j} = \prod_{i=1}^{M} L(s_{j}, Exp_{i}) = \prod_{i=1}^{P} \{1 - \Phi(d_{j,i})\} \times \prod_{i=1}^{R} \Phi(d_{j,i}) \times \prod_{i=1}^{K} (\phi(d_{j,i}))$$

Effective intensity measure in sequential shake table testing

Shake table tests:

- Shake table test information can be maximized by considering stages of a single earthquake record as independent tests
- Sequential testing involve damage accumulation
- Equivalent IM for stages with cumulative damage is necessary. It can based on:
 - Maximum drift
 - Damage Index
 - Energy absorbed etc.

Tentative modification factors considering Sa(T1) as an IM:

Case study: Numerical analysis

Case study: 3D RC frame (Blind prediction test at LNEC, 2012)

Objectives: Understanding the damage from a progressive incremental input motion

- 16 selected earthquake records with Mw = 6.0 6.5 are scaled at 0.2, 0.7, 1.0 and 2.0 factors (4 stages)
- Uni-directional Input motion (transverse and longitudinal)

universidade

le aveiro

Case study results: Proposal-1

Comparison between progressive testing and independent (IDA) testing:

□ Based on parametric analytical analysis apriori

- Negligible damage accumulation is observed in both directions together with small residual displacements
- Collapse damage index are recorded for drifts above the ultimate displacement (estimated via *Fardis et al., 1993*)

universidade

Case study results: Proposal-2

Modification factor based on data from sequential testing

- Proposal-2 based on DI may not be dependable but drift based method can be promising
- Proposed modification factors may need to be investigated further considering a wide range of buildings and earthquake records

Case study: Experimental/shake table testing

Shake table tests and response:

- Bi-directional input
- Portion of Tohoku unscaled earthquake [Horizontal Components]:
 - PGAx-dir=0.264g; Sa(T1)x-dir=0.489g
 - PGAy-dir:0.253g; Sa(T1)y-dir=0.507g
- ➤ 4 stages with factors [0.2, 0.7, 1.0. 2.0]
- Model characterization at the end of each stage of the test

Generation of Fragility curves and updating:

Generated from Incremental dynamic analysis (discussed in slides 11-12)

□ HAZUS limit states: Transverse axis

D	amage state	slight	Moderate	Extensiv	е	Complete*	_
D	rift ratio [%]	0.5	0.87	2.33	3.65		
Damage state		Slight [Am/β]	Moderate [Am/β]		Extensive [Am/β]		Complete* [Am/β]
Ana	lytical: Prior	0.398g/0.316	0.616	0.616g/0.364		L8g/0.412	1.172g/0.461
Upda	ited: Posterior	0.325g/0.323	0.405	g/0.370	0.91	L2g/0.419	1.332g/0.454

Generation of Fragility curves and updating:

□ HAZUS limit states: Longitudinal axis

Damage state	slight	Moderate	Extensive	e Complete*	_
Drift ratio [%]	0.5	0.87	2.33	3.65	
					-
Damage state Slight [Am/β]		Moderat	te [Am/β]	Extensive [Am/β]	Complete* [Am/β]
Analytical: Prior	0.322g/0.316	0.509	g/0.364	1.078g/0.412	1.394g/0.461
Updated: Posterior	0.292g/0.311	0.358	g/0.375	0.928g/0.416	1.036g/0.482

Fragility curves updating based on DS defined through post-earthquake damage:

□ Homogenized RC damage states [Elnashai and Rossetto, 2003]: Transverse axis

	Damage state	light	slight	Moderate	Extensive	p.collpase	e Collapse	
	Drift ratio [%]	0.131	0.189	0.558	1.631	3.341	4.779	
Damage state	light [Am/β]	Sli	ight [Am/β]	Moderate [Am/β]	Extensiv	ve [Am/β]	P. collapse [Am/β]	Collapse [Am/β]
Analytical: Prior	0.130g/0.316	5 0.1	176g/0.340	0.436g/0.364	0.926g	g/0.412	1.165g/0.437	1.197g/0.461
Updated: Posterio	r 0.102g/0.332	2 0.1	125g/0.355	0.328g/0.375	0.840g	g/0.408	1.075g/0.456	1.312g/0.430

universidade

Fragility curves updating based on DS defined for observed damage types:

□ Vision2000 Damage states and *Rodrigues et. al, (2013) findings*

universidade

Vision2000 damage states									
Damage state	Cracking [Dm/β]	Spalling [Dm/β]	R.buckling [Dm/ β]	Rapture [Dm/β]					
Analytical: Prior	5.8mm/0.316	14.5mm/0.364	43.5mm/0.412	72.5mm/0.461					
Updated: Posterior	5.75mm/0.316	21.2mm/0.383	65.2mm/0.424	80mm/0.444					
Damage states from biaxial RC column cyclic test, Rodrigues et al., 2013									
Damage state	Cracking [Dm/β]	Spalling [Dm/ β]	R.buckling [Dm/ β]	Rapture [Dm/β]					
Analytical: Prior	9.4mm/0.316	52.5mm/0.364	72.5mm/0.412	82.65mm/0.461					
Updated: Posterior	8.6mm/0.311	53.1mm/0.358	79.4mm/0.398	87.1mm/0.444					

Vision2000: Prior vs updated

Probability of Exceedence [] 0.75 Cracking:Prior 0.5 Cracking:Posterior Spalling:Prior Spalling:Posterior 0.25 Bar buckling:Prior Bar buckling:Posterior **Rupture:Prior** Rupture:Posterior 0 0.05 0.15 0 0.1 Spectral displacement [m]

Posterior: Vision2000 vs Rodrigues et al.

Remark: Number of experimental tests may alter the posterior distribution

universidade

Progress chart

Conclusion

- Experimental test results can only be used to improve fidelity of seismic risk assessment with careful attention
- Modification factor for accounting damage accumulation needs additional investigation under a wide range of earthquake records and structural characteristics, mainly the fundamental frequency and damping properties considering RC buildings only
- A framework for converting observed damage during shake table tests in to damage states defined by codes may be necessary so as to limit the subjectivity of exceedance criteria
- Update based on intensity measure coupled with exceedance decision based on EDP achieved seems a versatile method as opposed to EDP based only method
- Finally, It may be necessary to compare fragility curves built from experimental tests only (to analytically generated fragility curves that are updated by a handful of experimental tests. This might give a sense of validation for the updating technique.
- The fidelity of updating by varying the number of experiments needs be investigated

Plan for SSI testing on HS

> Flexible soil container filled with dry sand: Driven by shake table

universidade

- Lower story of a structure (that makes part of a multi-story reference frame): Erected on the sand deposit and loaded by an auxiliary actuator
- Shake table with acceleration tracking control property
- Auxiliary actuator with added compliance based equivalent force control

Thank you for your attention! gtekeste@lnec.pt

