Cost function for seismic risk mitigation

Sanam Moghimi

PD +

universidade de aveiro

* 🗅

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-July 19

Outline

- Thesis Review
- Accomplished Tasks
- Proposed Cost Function

Outline

- Thesis Review
- Accomplished Tasks
- Proposed Cost Function

Mitigation Framework; Cost Effectiveness Analysis

Sanam Moghimi/ Seismic risk of PreCode RC buildings retrofitted with Jacketing

Thesis Plan Scheduling

Expected time to finish

Outline

- Thesis Review
- Accomplished Tasks
- Proposed Cost Function

Case study: RC Portuguese pre-seismic code building stock up to 4 storey

Variables of material and geometry properties

		Variáveis	Média	CV (%)	Α	В	Referência
		G (kN/m ²)	8	12.5	6	10	Sousa <i>et al.</i> , 2016
		N° pisos	1/2/3/4	28/42/15/15	-	-	Censos, 2011
		H ₁	3.2	10	2.5	5	
Existing buildings	└ →	H _n	2.8	6	2.5	4	Silva <i>et al</i> ., 2014
5 5		L _{x/r} (m)	4.4	16	2.5	6.5	Furtado <i>et al.</i> , 2015
		h _{laio} (m)	0.23	24	0.1	0.35	
		f _{cm} (MPa)	23.8	49	5.0	80.0	Silva <i>et al.</i> , 2014
		f _{yk} (MPa)	235/400/500	25/50/25	-	-	Silva <i>et al.</i> , 2014
		ρ _ι (%)	1	40	0.3	3.5	Furtado <i>et al.</i> , 2015 Sousa <i>et al.</i> , 2016

Case study: RC Portuguese pre-seismic code building stock up to 4 storey

Variables of material and geometry properties

		Variáveis	Média	CV (%)	Α	В	Referência
		G (kN/m ²)	8	12.5	6	10	Sousa <i>et al.</i> , 2016
		N° pisos	1/2/3/4	28/42/15/15	-	-	Censos, 2011
		H ₁	3.2	10	2.5	5	
Existing buildings	L,	H _n	2.8	6	2.5	4	Silva <i>et al</i> ., 2014
5 5		L _{χ/γ} (m)	4.4	16	2.5	6.5	Furtado <i>et al.</i> , 2015
		h _{taio} (m)	0.23	24	0.1	0.35	
		f _{cm} (MPa)	23.8	49	5.0	80.0	Silva <i>et al.</i> , 2014
		f _{yk} (MPa)	235/400/500	25/50/25	_	-	Silva <i>et al.</i> , 2014
	-	ρ _ι (%)	1	40	0.3	3.5	Furtado <i>et al.</i> , 2015 Sousa <i>et al.</i> , 2016

Retrofitting Alternatives

- Concrete Jacketing : Shotcreet Cast in Place
- Steel Jacketing
- FRP
- Bracing
- Infill Walls

- Seismostruct modeling 200 buildings in each direction of X and Y
- Pushover analysis and Fragility curves

- Seismostruct modeling 200 buildings in each direction of X and Y
- Pushover analysis and Fragility curves

- Comparison of results with original LNECLOSS
 - Retrofitting solution :
 - RC Jacketing 2 level of reinforcement
 - Steel Jacketing 2 level of Confinement
 - □ FRP 2 level of reinforcement
 - Bracing 3 level of reinforcement
 - □ Infill Walls with shotcreet

- Seismostruct modeling 200 buildings in each direction of X and Y
- Pushover analysis and Fragility curves

- Comparison of results with original LNECLOSS
 - Retrofitting solution :
 - RC Jacketing 2 level of reinforcement
 - □ Steel Jacketing 2 level of Confinement
 - □ FRP 2 level of reinforcement
 - **Bracing 3 level of reinforcement**
 - □ Infill Walls with shotcreet

- Bracing retrofitting strategy
 - 3 different braces were considered
 - Steel members with circular hollow sections (CHS)
 - Steel S275

- Bracing retrofitting strategy
 - 3 different braces were considered
 - Steel members with circular hollow sections (CHS)
 - Steel S275

- Bracing 3 : Designed so that the resulting axial force in columns equals the columns axial resistance
 - D = 76 mm ; t = 4 mm
- Bracing 2 : Designed to a axial force value equal to 66% of Bracing 3 design force
 - D = 60 mm ; t = 3.2 mm
- Bracing 1 : Designed to a axial force value equal to 33% of Bracing 3 design force
 - D = 34 mm ; t = 3.2 mm

- Bracing retrofitting strategy
 - 3 different braces were considered
 - Steel members with circular hollow sections (CHS)
 - Steel S275

- Bracing 3 : Designed so that the resulting axial force in columns equals the columns axial resistance
 - D = 76 mm ; t = 4 mm
- Bracing 2 : Designed to a axial force value equal to 66% of Bracing 3 design force
 - D = 60 mm ; t = 3.2 mm
- Bracing 1 : Designed to a axial force value equal to 33% of Bracing 3 design force
 - D = 34 mm ; t = 3.2 mm

• Fragility curves for bracing strategy

1.2

Comparison of results with original LNECLOSS
Lossed area : Graphical representation

	Not Retrofitted	1		
Sum of Area_Loss(m^2)	Hard soil	Interm. soil	Soft soil	Grand Total
Masonry	202878.1804	285693.9677	168025.4817	656597.6298
RC Medium Ductility	22236.99962	32795.56446	41564.55176	96597.11584
RC Non ductil - low rise	36584.40222	32218.4207	125798.3592	194601.1821
RC Non ductil - med/high rise	7631.965466	7691.427523	10111.55653	25434.94952
Grand Total	269331.5477	358399.3804	345499.9492	973230.8772

	Bracing 2			
Sum of Area_Loss(m^2)	Hard soil	Interm. soil	Soft soil	Grand Total
Masonry	202878.1804	285693.9677	168025.4817	656597.6298
RC Medium Ductility	22236.99962	32795.56446	41564.55176	96597.11584
RC Non ductil - low rise	17379.05655	21680.61073	66616.79868	105676.466
RC Non ductil - med/high rise	7631.965466	7691.427523	10111.55653	25434.94952
Grand Total	250126.202	347861.5704	286318.3887	884306.1611

	Not Retrofitted	1		
Sum of Area_Loss(m^2)	Hard soil	Interm. soil	Soft soil	Grand Total
Masonry	202878.1804	285693.9677	168025.4817	656597.6298
RC Medium Ductility	22236.99962	32795.56446	41564.55176	96597.11584
RC Non ductil - low rise	36584.40222	32218.4207	125798.3592	194601.1821
RC Non ductil - med/high rise	7631.965466	7691.427523	10111.55653	25434.94952
Grand Total	269331.5477	358399.3804	345499.9492	973230.8772

	Bracing 2			
Sum of Area_Loss(m^2)	Hard soil	Interm. soil	Soft soil	Grand Total
Masonry	202878.1804	285693.9677	168025.4817	656597.6298
RC Medium Ductility	22236.99962	32795.56446	41564.55176	96597.11584
RC Non ductil - low rise	17379.05655	21680.61073	66616.79868	105676.466
RC Non ductil - med/high rise	7631.965466	7691.427523	10111.55653	25434.94952
Grand Total	250126.202	347861.5704	286318.3887	884306.1611

Reduction achieved with mitigation

Mitigation	% of RC Non du	ıctil - low rise		
Pracing 2/Not Patrofittad	Hard soil	Interm. soil	Soft soil	Grand Total
Diacing2/ NOT Refformed	52.50%	32.71%	47.04%	45.70%

Outline

- Thesis Review
- Accomplished Tasks
- Proposed Cost Function

Seismic risk management strategies

- Mitigation
 - Temporary retrofit
 - Phased retrofit
 - Retrofit with occupancy
 - Retrofit vacant building
- Do nothing
- Demolition + reconstruction
- Occupancy profile change
- Insurance against losses

Seismic risk management strategies

• Mitigation

- Temporary retrofit
- Phased retrofit
- Retrofit with occupancy
- Retrofit vacant building
- Do nothing
- Demolition + reconstruction
- Occupancy profile change
- Insurance against losses

Sanam Moghimi/ Seismic Risk Mitigation Strategies; Cost Effective Analysis

Seismic risk mitigation strategies

- Enhancing deformation capacity
 - FRP and steel jacketing
- System strengthening and stiffening
 - RC jacketing
 - Bracing
 - Reinforcing infill walls
- Reducing earthquake demand
 - Base isolation
 - Energy dissipation

Seismic risk mitigation strategies

• Enhancing deformation capacity

- FRP and steel jacketing
- System strengthening and stiffening
 - RC jacketing
 - Bracing
 - Reinforcing infill walls
- Reducing earthquake demand
 - Base isolation
 - Energy dissipation

Enhancing deformation capacity strategy

• Steel plates

Average hei	ght [m]	N⁰ of strips	Column	dimension [m]	Plate dimension [m]			
			ец	C)M/	ЦБ	6 D	PT	
			ы	210	пр	58	Conf 1.5	Conf 2.0
First Floor	3.2	22	0.20	0.25	0.05	0.1	0.002	0.006
Other Floor	2.8	19	0.20	0.25	0.05	0.1	0.003	0.008
First Floor	3.2	22	0.25	0.25	0.05	0.1	0.004	0.009
Other Floor	2.8	19	0.25	0.25	0.05	0.1	0.004	0.008
First Floor	3.2	22	0.20	0.25	0.05	01	0.004	0.01
Other Floor	2.8	19	0.30	0.25	0.05	0.1	0.004	0.01

• FRP sheets

External Height	EH
Internal Widht	IW
Section Height	SH
Section Widht	SW
Plate	рт
Thickness	1 1
Plate Height	PH
Plate Space	SP

Average beig	ht [m]	N⁰ of	Colu dimensi	umn ons [m]	Sheet dimensions [m]			
Average nerg		Strips			F	Ч		
			SH	SW	Conf.1.5	Conf.2.0	SP	
First Floor	3.2	30	0.20	0.25	0.04	0.07	0.20	
Other Floor	2.8	24	0.20	0.25	0.04	0.07	0.20	
First Floor	3.2	27	0.25	0.25	0.04	0.09	0.00	
Other Floor	2.8	24	0.25	0.25	0.04	0.08	0.20	
First Floor	3.2	22	0.20	0.25	0.05	0.10	0.20	
Other Floor	2.8	19	0.30	0.25	0.05	0.10	0.20	

System strengthening and stiffening : RC jacketing of columns

- Overview of strategy
 - New concrete
 - Additional 10 cm thickness
 - C25/30
 - 2,5 cm concrete cover

System strengthening and stiffening : RC jacketing of columns

- Overview of strategy
 - New concrete
 - Additional 10 cm thickness
 - C25/30
 - 2,5 cm concrete cover

- 2 different RC jacketing solutions
 - Jacketing 2 : 2% ratio of reinforcement area (wrt new Ac)
 - Jacketing 3 : 3% ratio of reinforcement area (wrt new Ac)
 - Applied by shotcreet or cast in place

- Benefits
 - Increased value of the building due to its improved seismic performance (B)
- Costs

. . .

- Costs of implementing mitigation strategy (C_{MS})
- Damage repair costs (C_{RP})
- Demolition and reconstruction costs ($C_D + C_{RC}$)
- Costs of relocation of users (C_{RU})
- Costs of loss revenue (C_{LR})
- Costs of fatalities/injuries compensations (C_{FIC})

Sanam Moghimi/ Seismic Risk Mitigation Strategies; Cost Effective Analysis

- Benefits
 - Increased value of the building due to its improved seismic performance (B)

Costs

- Costs of implementing mitigation strategy (C_{MS})
- Damage repair costs (C_{RP})
- Demolition and reconstruction costs ($C_D + C_{RC}$)
- Costs of relocation of users (C_{RU})
- Costs of loss revenue (C_{LR})
- Costs of fatalities/injuries compensations (C_{FIC})

Sanam Moghimi/ Seismic Risk Mitigation Strategies; Cost Effective Analysis

• Cost function

$$C_{TOT} = C_{MS} + C_{RP} + (C_{D} + C_{RC}) + C_{RU} + C_{LR} + C_{FIC}$$

 In order to compare costs at different times, all values must be adjusted to a reference year prices, multiplying the costs by

$$\frac{1}{\left(1+r\right)^{\Delta T}}$$

- *r* represents the discount rate [2% to 4%]
- ΔT is given by $T_i T_r$, where T_i represents the year of cost *i* and T_r represents the reference year

Costs of implementing one RC jacketing mitigation strategy

	Description of activity						Sheet n.º
Reinford	cement of reinforced concrete pillar of 20x25cm, by means of filling of 10 cm of thicl	kness in a	ll its faces	, with rei	nforced co	ncrete, re	ealized with
concrete	e C25 / 30 (XC1 (P); D12; S3; Cl 0,4) manufactured in central, and concrete with crane	e, and ste	el A400 N	R, with ar	amount	of 157 kg	/ m³, direct
bond th	rough adhesive; discharge with manual means from the slab of the upper plant by h	noles prev	iously exe	ecuted; pr	ior applica	ation of a	continuous
layer of	epoxy resin based two-component thixotropic adhesive on the surface of the cured	concrete	. The price	e includes	the asser	nbly and	dismantling
	of the formwork system and the preparation and assembly of the reinforcem	nent at the	e definitiv	e place of	f its instal	lation.	
	Resources	Unit	Quant.	Nuit cost (€)	Cost (€)	Sub- total (€)	% of direct cost (%)
	Two-component thixotropic adhesive based on epoxy resin for the correct connection between fresh concrete and hardened concrete or to improve the adhesion of hardened concrete and steel according to NP EN 1504-7.	kg/m	1.35	10.85	14.65		
Mat	Concrete C25 / 30 (XC1 (P) D12; S3; Cl 0,4), manufactured in plant according to NP EN 206-1.	m3/m	0.13	83.08	10.58	37.88	35.02
	Steel in ribbed bars, A 400NR, supplied in unworked work of various diameters	kg/m	20.82	0.60	12.49		
	Galvanized binding wire, 1,30mm in diameter	kg/m	0.14	1.10	0.16		
	Electric hammer	hr/m	0.70	2.80	1.96		
E a a	Electric battery	hr/m	0.70	4.81	3.38	C 20	F 02
Edb	Metal sheet 50x50 cm, for formwork of reinforced concrete pillars of rectangular or square section, up to 3 m in height, including fittings	m2/m	0.02	48.00	0.96	6.30	5.83
	Officer of 1st shipowner of iron	hr/m	0.18	19.31	3.50		
	Iron Helper Assistant	hr/m	0.20	18.78	3.77		
Labour	Non specialised construction workers	hr/m	0.74	17.39	12.85	63 98	59 15
Labour	Specialised construction workers	hr/m	0.74	17.84	13.18	05.50	55.15
	Officer of 1st structurer, in concrete works	hr/m	0.94	19.31	18.07		
	Structuralist assistant in concrete works	hr/m	0.67	18.78	12.60		
	Direct cost (CD)				Total (€)	108.16	
	Cost of operation S / profit, 10% Indirect costs				Total (€)	118.98	
	Total Cost Operation 8% Profits			_	Total (€)	128.50	

Costs of implementing one RC jacketing mitigation strategy

Costs of implementing mitigation strategies

• Other strategies

Costs of implementing mitigation strategy

• RC jacketing : All building typologies

Mean - 2R	Sh	otcreet	Ca	st in place
1 Storey	€	9,227.93	€	8,681.28
2 Storeys	€	16,631.75	€	15,607.92
3 Storeys	€	23,944.50	€	24,342.89
4 Storeys	€	35,346.46	€	32,856.05
	Ch		6	at in place
31DV - 2K	Sn	otcreet	Ca	st in place
1 Storey	Sn €	877.62	€	823.70
1 Storey 2 Storeys	sn €	877.62 1,821.06	€ €	823.70 1,711.33
1 Storey 2 Storeys 3 Storeys	Sn € €	877.62 1,821.06 2,216.75	€ €	823.70 1,711.33 1,877.61

Mean - 3R	Vean - 3R Shotcreet			Cast in place	
1 Storey	€	7,150.19	€	7,843.58	
2 Storeys	€	12,765.32	€	13,971.72	
3 Storeys	€	18,104.17	€	21,427.43	
4 Storeys	€	26,174.22	€	28,459.18	
STDV - 3R	Sh	otcreet	Cas	st in place	
STDV - 3R 1 Storey	Sh €	otcreet 676.10	Cas €	st in place 739.35	
STDV - 3R 1 Storey 2 Storeys	Sh €	otcreet 676.10 1,428.41	Cas €	st in place 739.35 1,566.73	
STDV - 3R 1 Storey 2 Storeys 3 Storeys	Sh € €	otcreet 676.10 1,428.41 1,454.01	Cas € €	st in place 739.35 1,566.73 1,182.95	

Sanam Moghimi/ Seismic Risk Mitigation Strategies; Cost Effective Analysis

- Depend on Limit States definition
- Slight Damage (SD)
- The structure is only slightly damaged and economic to repair
- 50% of Maximum Base Shear is achieved

• Depend on Limit States definition

– Slight Damage (SD)

- The structure is only slightly damaged and economic to repair
- 50% of Maximum Base Shear is achieved
- Moderate Damage (MD)
- The structure is moderately damaged
- 75% of Maximum Base Shear is achieved

- Depend on Limit States definition
- Slight Damage (SD)
- The structure is only slightly damaged and economic to repair
- 50% of Maximum Base Shear is achieved
- Moderate Damage (MD)
- The structure is moderately damaged
- 75% of Maximum Base Shear is achieved

- Extensive Damage (ED)
- The structure is significantly damaged
- 100% (Maximum) Base Shear is achieved

- Depend on Limit States definition
- Slight Damage (SD)
- The structure is only slightly damaged and economic to repair
- 50% of Maximum Base Shear is achieved
- Moderate Damage (MD)
- The structure is moderately damaged
- 75% of Maximum Base Shear is achieved

- Extensive Damage (ED)
- The structure is significantly damaged
- 100% (Maximum) Base Shear is achieved
- Near Collapse (NC)
- The structure is completely damaged
- 80% of Max Base Shear is achieved

• Depend on Limit States definition [Damage to non-structural elements is not yet taken into account]

• Depend on Limit States definition [Damage to non-structural elements is not yet taken into account]

- Slight damage : Mortar injection repair

• Depend on Limit States definition [Damage to non-structural elements is not yet taken into account]

- Slight damage : Mortar injection repair
- Moderate damage : RC jacketing

• Depend on Limit States definition [Damage to non-structural elements is not yet taken into account]

- Slight damage : Mortar injection repair
- Moderate damage : RC jacketing

- Extensive damage and Near collapse : Demolition + reconstruction

Costs for mortar injection repair

- Injection of mortar
 - Suited for repair of stabilised fissures and cracks
 - Epoxy based : crack width > 0.2 to 0.3 mm < 5 to 6 mm
 - Cement based : crack width > 6 mm

Costs for mortar injection repair

- Injection of mortar
 - Suited for repair of stabilised fissures and cracks
 - Epoxy based : crack width > 0.2 to 0.3 mm < 5 to 6 mm
 - Cement based : crack width > 6 mm
 - 50€ per m of crack [e.g. 1 m every element]
 - 700€ for injection equipment

Costs for RC jacketing

• Costs are considered the same as for the mitigation strategy

Cost of demolition of an existing building

[400 m²/floor, Demolition by manual equipment and heavy machinery]

- Normal condition of the building
 - 4 storeys (11,6 m tall) : 75,000.00€
 - 3 storeys (8,8 m tall) : 55,000.00€
 - 2 storeys (6,0 m tall) : 36,000.00€
 - 1 storey (3,2 m tall) : 18,000.00€

• Cost of demolition of an existing building

[400 m²/floor, Demolition by manual equipment and heavy machinery]

- Normal condition of the building
 - 4 storeys (11,6 m tall) : 75,000.00€
 - 3 storeys (8,8 m tall) : 55,000.00€
 - 2 storeys (6,0 m tall) : 36,000.00€
 - 1 storey (3,2 m tall) : 18,000.00€
- Poor condition of the building [e.g. after an earthquake]
 - 4 storeys (11,6 m tall) : 90,000.00€
 - 3 storeys (8,8 m tall) : 65,000.00€
 - 2 storeys (6,0 m tall) : 44,000.00€
 - 1 storey (3,2 m tall) : 22,500.00€

- Cost of construction of a new building
 - Flat rate of 1000€/m² is considered at this phase

[Portaria n.º 65/2019 : governs the construction of residential buildings with controlled costs]

- Cost of construction of a new building
 - Flat rate of 1000€/m² is considered at this phase

[Portaria n.º 65/2019 : governs the construction of residential buildings with controlled costs]

$$C_{RC} = C_S \cdot 1.30 \cdot C_R \cdot C_O$$

- C_S : reference cost of construction per m² = 710 €/m² [2019 value]

- C_R : regional coeficient
 - 1,0 for the Portuguese mainland
 - 1.2 for Azores and Madeira
- C_O : operational coeficient
 - Between 1.00 and 1.12, taken as \approx 1.08

- Assuming $B = cte \rightarrow minimize Cost function$
 - Annual expected costs given seismic action (a_{aR})

$$\begin{split} \mathsf{E}[\mathsf{C}_{\mathsf{TOT}} \mid & a_{gR}] = \mathsf{E}[\mathsf{C}_{\mathsf{MS}}] + \\ & + \mathsf{E}[\mathsf{C}_{\mathsf{RP},\mathsf{mortar}} \cdot \mathsf{P}(\mathsf{S}_{\mathsf{d},\mathsf{SD}} \leq \mathsf{S}_{\mathsf{d}} < \mathsf{S}_{\mathsf{d},\mathsf{MD}}) \mid a_{gR}] + \\ & + \mathsf{E}[\mathsf{C}_{\mathsf{RP},\mathsf{jacket}} \cdot \mathsf{P}(\mathsf{S}_{\mathsf{d},\mathsf{MD}} \leq \mathsf{S}_{\mathsf{d}} < \mathsf{S}_{\mathsf{d},\mathsf{ED}}) \mid a_{gR}] + \\ & + \mathsf{E}[(\mathsf{C}_{\mathsf{D}} + \ \mathsf{C}_{\mathsf{RC}}) \cdot \mathsf{P}(\mathsf{S}_{\mathsf{d},\mathsf{ED}} \leq \mathsf{S}_{\mathsf{d}}) \mid a_{gR}] \end{split}$$

- Assuming $B = cte \rightarrow minimize Cost function$
 - Annual expected costs considering all seismic actions, $a_{qR,i}$

= integral of $E[C|a_{gR,i}]$ over $P(a_g > a_{gR,i})$:

$$= \mathsf{E}[\mathsf{C}_{\mathsf{MS}}] + \int \mathsf{E}[\mathsf{C}_{\mathsf{TOT}} - \mathsf{C}_{\mathsf{MS}} \mid a_{gR,i}] \, d\mathsf{P}(a_g > a_{gR,i})$$
$$\approx \mathsf{E}[\mathsf{C}_{\mathsf{MS}}] + \sum_{i=1}^{\infty} \mathsf{E}[\mathsf{C}_{\mathsf{TOT}} - \mathsf{C}_{\mathsf{MS}} \mid a_{gR,i}] \cdot \left| \frac{d\mathsf{P}(a_g > a_{gR,i})}{\mathsf{d}a_g} \right| \cdot \Delta a_g$$

P(a_g > a_{gR,i}) : Mean annual probability of exceedance of the seismic action *i* Eads L. et al An efficient method for estimating the collapse risk

of structures in seismic regions.

Earthquake Engng Struct. Dyn. 42:1, 25-41, 2013

Risk management

Evaluating if these investments are justifiable in terms of life safety improvements

 $\mathbf{P}(\mathbf{d}\,\cap\,\mathbf{f}):$ Probability of human fatality as a result of a structural failure

Thank You for Your Attention

smoghimi@lnec.pt