Development of aluminium alloy hysteretic damping system for seismic retrofitting of pre-code reinforced concrete buildings

Ricardo Sousa Alves Ferreira

Supervisors:

Professor Jorge Proença (PhD, Associate Professor IST, CERIS Senior Researcher)

Professor António Gago (PhD, Assistant Professor IST, CERIS Senior Researcher)

universidade

U. PORTO

| ※ 🖸

Presentation outline

Introduction:

- The problem
- Objectives

Developments:

- Information about the available aluminium alloys, its production and processing;
- Definition of the aluminium alloys targeted for the development of the BRD_AL prototype;
- Numeric analyses performed with different confirgurations of the dissipative device;

Future work

U. PORTO

* 🔿

universidade

State of the Art – Dissipative devices – Brief overview

Classification of devices								
	Linea	ar(LD)						
Displacement Dependent	Non-Linear	Yielding metal (YMD)						
	(NLD)/Hysteretic(HD)	Friction (FD)						
Velocity Dependent/Viscous	Fluid Viscous (FVD)							
Dampers (VD)	Fluid Spr	ring (FSD)						
Acceleration dependent								
Modified Input								
Combination								

Source : Frederico Mazzolani, Luis Calado, Chapter 1 - Introduction to reversible mixed technologies, Earthquake Protection of historical buildings by reversed mixed technologies, Vol.2 - FP6 PROHITECH project

Hysteretic behaviour of Buckling Restrained Braces- as a principle for the development of new device

TÉCNICO

U. PORTO

| ※ 🤇

Objectives:

- Alternative to the dissipative bracing device paradigm: use an extruded aluminium alloy member without infill;
- Develop a cross-section to prevent buckling of both core and casing ;
- Light-weight and easy to integrate in bracing system;
- Device that is simple to integrate both in new and existing buildings
- Capable of withstanding significant plasticization, hence increasing structural damping due to hysteretic behaviour of the aluminium member;

U. PORTO

universidade

TÉCNICO

Definition of the aluminium alloy

Aluminium allo	y designation system	Aluminium alloy o	lesignation system
Wrought alloys	Series	Cast alloys	Series
	1xxx		1xx.x
Alloys grouped in	major alloying elements	Alloys grouped in ma	ajor alloying elements
Cu	2xxx	Cu	2xx.x
Mn	Зххх	Si+Cu or Mg	3xx.x
Si	4xxx	Si	4xx.x
Mg	5xxx	Mg	5xx.x
Mg and Si	бххх	Zn	6xx.x
Zn	7xxx	Sn	7xx.x
Other elements	8xxx	Other elements	8xx.x
Unused series	9xxx	Unused series	9xx.x

Wrought alloys: The alloys groups is defined by the first digit. Modifications of the original alloy and impurity are indicated by the second digit. In the case of the group 1xxx, the last two digits the % of aluminium above 99%.

For alloys of groups 2xxx to 8xxx, the last two digits serve to further identify individual aluminium alloys

U. PORTO

TÉCNICO

PD + F

Cast alloys: First digits indicates the major alloying group. The following second digits indicate the aluminium purity. The digit to the right indicates the product form either casting or ingot

First number indicates the number of series. The second is mainly 0 and can vary from 1 to 9 for its modifications. The third and fourth figure identifies the specific alloy within the group

| 糸 Ć

universidade

Aluminium alloy – Fabrication stage designations

Rough stage of fabrication (F)

Annealed stage (O)

Work-hardened stage (H)

Tempered non-stabilized stage (W)

Heat-treated stage (T)

U.PORTO

| 糸 Ć

universidade

Work hardened products, without control of cold working rate nor its thermal conditions

Annealed products to obtain lower strength temper or to improve ductility

Products whose strength has been increased by cold working, with or without thermal treatments.

Products subjected to solution treatment, with uncontrolled temper and then aged at room temperature;

Products that have been treated by a predefined combination of processes such as:

Solution Tempering Natural or artificial ageing Quenching

Definition of the aluminium alloy

	Basic treatme	nts (sequence)		Designation
	Withoutwork	Naturally aged		T4
Heat treatment with solution treatment	hardening	Artificially aged		Т6
		Workbardapad	Naturallyaged	Т3
	With work hardening	worknardened	Artificiallyaged	Т8
		Artificially aged	Work hardened	Т9
	Without work	Naturallyaged		T1
Heat treatment without solution treatment	nardening	Artificiallyaged		Т5
	Withwork	Work hardened	Naturallyaged	T11
	hardening		Artificiallyaged	T12
		Artificially aged	Work hardened	T10

Heat treatment stage possibilities:

Temperature and time of ageing play an important role in the definition of the alloys mechanical behaviour

universidade

de aveiro

/NE<

U. PORTO

* 🔿

Definition of the aluminium alloy

EN AW 6082-T6 (initial state)

Chemical composition (% of weight)									
Elements : Si Fe Cu Mn Mg Cr Zn Ti Al									
Max	0,7	-	-	0,4	0,6	-	-	-	-
Min	1,3	0,5	0,1	1	1,2	0,25	0,2	0,1	rest

EN AW 5083 –H111 (initial and final state)

TÉCNICO

Chemical composition (% of weight)										
Elements :	ts: Si Fe Cu Mn Mg Cr Zn Ti Al									
Max	-	-	-	0,4	4	0,05	-	-	-	
Min	0,4	0,4	0,1	1	4,9	0,25	0,2	0,15	rest	

U. PORTO

※ 🔿

universidade

- Mg and Si are the main alloying elements;
- Mechanical properties can be enhanced by thermal treatments;
- Good corrosion resistance

- Alloys that cannot be heat treated;
- Higher mechanical properties than of those of 2xxx, 3xxx, 4xxx;
- High corrosion resistance, when Mg % is less than 6%;

Definition of the aluminium alloy

PD + F

TÉCNICO

U.PORTO

 $| \times \langle$

universidade

Characterization of aluminium alloys

Objectives:

- Assess the mechanical behaviour of the alloys, especially when subjected to cyclic loading;
- Determine the best suited alloy to be used in BRD_AL production;
- Dissemination of experimental results of tested aluminium alloys

Earthquake Engineering - Earthquakes and Tsunamis

Uniaxial tension tests results:

- i. Tested alloys present quite different hardening rate (this rate quite low in case of the 6082-T6 alloy).
- ii. Alloys show different with respect to yield and ultimate strengths. The 6082-T6 yield stress ($f_{y_{z}}$ =290 MPa) is approx. doubles the 5083-H111 yield strength. However, ultimate strength of 6082-T6 (f_{ult} =333 MPa) is only 9% higher than 5083-H111 (f_{ult} =305MPa).
- iii. Alloys also show differences with regard to plastic strain . 5083-HH111 show much higher strain capacity. The ultimate strain (ϵ_u) of 6082-T6 is almost 50% lower than the 5083-H111 ϵ_u
- iv. For both alloys, similar elastic behaviour was observed. The young modulus in tension attained for both cases is approx. E= 70 GPa.
- v. Regarding damage evolution, it possible to observe that rupture occurs right after damage initiation, indicating a brittle damage controlled (possibly) by the material ultimate shear strain (to be analysed more thoroughly)

U. PORTO

|∦ ()

universidade

de aveiro

TÉCNICO

PD

IF ICIST

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Characterization of aluminium alloys

Uniaxial tension tests – Numeric analysis

Numeric modelling of uniaxial tension behaviour Inelastic behaviour of metal - Johnson Cook plasticity model, using ABAQUS software

Hardening law:

PD

TÉCNICO

LISBOA

/NE<

U. PORTO

* C

universidade

- A, B, n, m material parameters obtained from test results;
- is a non dimensional temperature that for values of exposition below the transition temperature is equal to 0;
- Element type: C3D8R-8 node linear brick, reduced integration and hourglass control

Test specimen	γ (t/m³)	E (Gpa)		A (Mpa)		В		n				
#6082-T6 - Numeric	2,7e-3	65		290		290 310 0,7		310		0,75		
#5083-H111 - Numeric	2,7e-3	70	70		110		390		0,32			
Ductile damage initiation - Parameters Ductile damage evolution - Parameters												
Test specimen	ε _{fract} (mm)	σ _{triax} (mm)	ε	ε _{rate} δι		^j failure Softer (mm)		ning	Exp n			
#6082-T6 - Numeric	0,15	0,57	0,001			13 expone		exponential				
#5083-H111 - Numeric	0,12	0,57	0,001		001 7,5		expone	exponential				
Shear d	lamage initiatio	n - Paramete	rs			Shear dam	age evol	ution - I	Parameters			
Test specimen	ε _{fract} (mm)	σ _{triax} (mm)	ε (m	ε _{rate} (mm)		^{irate - Ô} failure nm) (mm)		δ _{failure} (mm)		ning	Exp n	
#6082-T6 - Numeric	0,1	0,57	0,001			13	expone	ential	10			
#5083-H111 - Numeric	0,2	0,57	0,0	001		16	expone	ential	22			

Earthquake Engineering - Earthquakes and Tsunamis

Aluminium Alloy analyses

Experimental campaign - Cyclic behaviour of the 6082 – T6 – Results (resume)

Test specimem C2 (λ_{G} =5) diagram show rather stable cycles until rupture, no visible effect of slenderness;

Test specimen C4, λ_{G} =7,19, the effect of slenderness is negligible in first cycles in plastic regime, although becomes evident in the final cycles before rupture. cycles remain rather stable until rupture. Loss of strength occurs mainly in the last cycles, more predominantly in the last half cycles in compressions;

In test specimens C5 (λ_{G} =10) and C6 (λ_{G} =12), the influence of slenderness (negative tendency of the half cycles in compression) becomes evident right at the first cycles in the plastic regime. Diagrams show pronounced decay in strength during plastic regime, both in tension and compression. This strength decay is progressive until rupture.

U.PORTO

* 🗋

universidade

de aveiro

TÉCNICO

• In all tested cases, the values achieved for the maximum plastic strain were quite small (around 1,5%)

Aluminium Alloy analyses

Experimental campaign - Cyclic behaviour of the 5083-H111alloy (Preliminary)

universidade

le aveiro

- High symmetry. Strength decay occurs abruptly only at rupture of the test specimen;
- Maximum strength before rupture is similar to the one achieved with the 6082-T6 alloy;
- Combined isotropic/kinematic hardening occurs in almost all cycles except in the last cycle before rupture;
- Tension semi-cycles, both in tension and in compression, show only some decay in the last set cycle, mainly in the half-cycles in compression;
- Test specimen shows rather stable cycles until rupture;
- Maximum plastic strain is almost triple of the maximum plastic strain of 6082-T6 alloy.

IF ICIST

TÉCNICO

• More cyclic tests of the 5083-H111 will be carried out

U.PORTO

| * 🤇

Cyclic test - 5083-H111 alloy

Earthquake Engineering - Earthquakes and Tsunamis

Numeric modelling of cyclic behaviour both alloys- Combined isotropic/kinematic non linear (Lemaitre and Chaboche - defined in ABAQUS software)

• Isotropic hardening:
$$^{0} = _{0}^{-} + Q \left(1 - e^{-b} \right)^{pl}$$

• Kinematic hardening (evolution of back-stress α_k in a stable cycle – simplified expression for calibration purposes $\alpha_k = \frac{C_k}{1 - e^{-\gamma_k e^{pl}}} + \alpha_k \cdot e^{-\gamma_k e^{pl}}$

$$lpha_k = rac{O_k}{\gamma_k} \left(1-e^{-\gamma_k arepsilon^{pl}}
ight) + lpha_{k,1} e^{-\gamma_k arepsilon^{pl}}$$

Overall back stress

 $\alpha = \sum \alpha_k$

Above expressions used calibrate to calibrate C_k and γ_k

Parameters for plastic cyclic behaviour												
Material	0	Q	b	<i>C</i> ₁	1	<i>C</i> ₂	2	<i>C</i> ₃	3	<i>C</i> ₄	4	
6082-T6	290	-	-	65000	2500	25000	800	15000	250	1500	25	
5083-H111	110	15	3,45	100000	1000	5000	50	250	25	-	-	

universidade

de aveiro

TÉCNICO LISBOA

Aluminium Alloy - Thermal treatments

Thermal treatment of alloy 6082

- Great improvements in the mechanical properties of these alloys can be achieved by suitable solution treatment and ageing operations;
- Transformations phases are induced by changing the temperature of an alloy that as a fixed bulk composition.

universidade

Earthquake Engineering - Earthquakes and Tsunamis

TÉCNICO

PD -

U. PORTO

| ☆ 🤇

universidade de aveiro

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Dissipative element

Numeric analyses for different configuration of the dissipative element

• Material parameters: 6082-T6;

TÉCNICO

PD ·

/NE<

U. PORTO

||米||

• Loading history: same loading history considered in the cyclic tests

universidade

Dissipative element

Numeric analyses for different configuration of the dissipative element

de aveiro

/NE<

FCT PhD

Buckling analyses for all configurations – Maximum buckling loads of the first 2 modes (preliminary); •

Dissipative element

TÉCNICO LISBOA

* 🔿

U. PORTO

universidade de aveiro

PD + F

FCT PhD

• Buckling displacement field (first 2 modes) used as reference for potential geometric imperfections in dissipative device

Work in progress :

- Enhancing of 6082 alloy ductility Finalizing the application of heat treatments, to determine which is the most efficient treatment in increasing ductility of the 6082 alloy;
- Mechanical characterization of 6082 alloy, subjected to the proposed heat treatments;
- Choose the most adequate alloy for the BRD_AL prototype;
- Finalize the numerical analysis of potential configurations of the BRD_AL, assessing dissipative capacity of the different configurations
- Numerical analysis of case study building, assessing the effect of non-linear behaviour to cyclic loading in the dynamic behaviour of the building

universidade

References

Calado, L., Proença, J. M. and Pavlovcic, L. Chapter 3 - Devices. [book auth.] F. M. Mazzolani. *Earthquake Protection of Historical Buildings By Reversible Mixed Technologies – Volume 2: Seismic Protection of Historical Buildings: Guide to Material and Technology Selection.* s.l. : Polimetrica – International Scientific Publisher, 2012.

Antonucci, R., et al. Strutture prefabbricate con controventi dissipativi: l'esempio del nouvo polo didattico della Facoltà di Ingegnaria dell'Università Politecnica delle Marche di Ancona. s.l. : Università Politecnica delle Marche, Ancona [in Italian], 2006.

Federico Mazzolani, Luis Calado, Introduction to reversible mixed technologies, FP6 PROHITEC project

universidade

de aveiro

Almeida, A. B. Seismic retrofit of reinforced concrete building structures with buckling restrained braces. s.l.: Thesis submitted in partial fulfillment of the MSc degree in Civil Engineering (Structures) in IST (Supervisors Proença, J.M. and Gago, A.S.), 2011.

EN 10002-1-"Tensile testing -Part 1: Method of test at ambient temperature;

EN 15129 - "Anti-seismic devices";

U.PORTO

| ※ Ć

ATC 24 - "Guidelines for the cyclic seismic testing of components of steel structures";

ECCS TGW 1.3 1985 - "Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads;

Fahnestock L.A., Sauce R., Ricles J.M., *Seismic response and performance of buckling-restrained braced frames*, Journal of Structural Engineering, ASCE 2007, Vol.133, pp. 1195-1204;

F.M.Mazzolani, A.Mandara, G.Di Lauro, *Plastic buckling of axially loaded aluminium cylinders: a new design approach*, CMIS '04, Fourth International Conference on Coupled Instabilities in Metal Structures, Rome, Italy, 27-29 September 2004;

G.Di Matteis, F.M.Mazzolani and S.Panico, *Pure Aluminium shear panels as dissipative devices in moment resisting steel frames*, Journal of Earthquake Engineering and Structural Dynamics, 2007, Vol.36, pp 841-859.

References

G.Di Matteis, G. Brando, F.M.Mazzolani, Pure Aluminium: An innovative material for structural applications, Journal of Construction and Building Materials, 2012, Vol.26, pp 677-686. Chu-Lin Wang, Tsutomi Usami, Jyunki Funayama, Fumiaki Imase, Low-cycle fatigue testing of extruded aluminium alloy buckling restrained braces, Journal of Engineering Structures, 2013, Vol.46, pp 294-301. World Aluminium- http://www.world-aluminium.org/publications/ European Aluminium - https://www.european-aluminium.eu

Thank you for your attention.

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-