Infrastructures and Geotechnics

Risk management applied to cultural heritage buildings. The effect of soil settlements and vibrations induced by underground structures.

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-July 15 2019

Underground structures in urban environment Cultural heritage buildings

- Historical constructions of high social and cultural value extremely susceptible to damage and deterioration due to weathering and environmental actions • Low mechanical properties and brittle failure
- Emerging demand on underground constructions aspects of efficacy, time transferring needs and obstruction in over-concentrated overground urban networks
- □ Cumulative damage propagation in structural and non-structural elements
 - assessment through monitoring and experimental strategies, modelling
 - employment of appropriate mitigation techniques

Underground structures in urban environment

Research activities - Cyclic low-stress rate fatigue tests on masonry

Long-term effects on durability have not been fully evaluated and many times are not accounted in the assessment process of historical masonry buildings

Structural monitoring of induced vibrations

Groundborne vibrations • underground railway traffic

Guidelines on: Measurement / Instrumentation / Processing / Evaluation

Type and condition of structure	Vibration source/type	Description		Dominant vibration frequency (Hz)	PPV (mm/s)	Indicator	Reference	
Sensitive structures of high intrinsic value	Short-term	At foundation level		1-10	3		DIN 4150 3:1999	
				10-50	3-8	V _{max}		
				50-100	8-10			
		At highest horizontal plane		-	8	V _{max}	Germany	
	Long-term	At highest horizontal plane		-	2.5	$ V_{max} $		
Historical buildings or under protection	Occasional Frequent	At foundation level		<30	1.5-3		SN 640312 1992	
				30-60	2-4	$ \mathbf{V}_{\mathrm{R}} $		
				>60	3-6		Switzerland	
	_			Wave speed (m/s)	_			
Historical buildings under state protection		Vibrations at highest level	Brick	<1600 1600-2100 >2100	0.15 0.15-0.2 0.2	V _{max}	GB/T 50452	
			Stone	<2300 2300-2900 >2900	0.20 0.20-0.25 0.25	V _{max}	2008 China	
			Timber	<4600 4600-5600 >5600	0.18 0.18-0.22 0.22	V _{max}		

Structural monitoring of induced vibrations Groundborne vibrations • underground railway traffic

- Monitoring of metro induced vibrations in three cultural heritage buildings
 Church of the Angels, in Lisbon ✓
- □ 1 passing train every 3-5 min
- Use of kinetic quantities
- Response is mass controlled since f_n < f_s
 Attenuation is expected
- □ Triaxial seismographers with GPS time base
 Triaxial geophone ✓
- Sampling frequency 1000-2000Hz

Structural monitoring of induced vibrations Church of the Angels, Lisbon

Structural monitoring of induced vibrations Church of the Angels, Lisbon

0.0%

5.7%

0.0%

Difference

(%)

Location	max PPV (mm/s)	max V _R (mm/s)	Frequency content ¹ (Hz)		Spatial wave frequency (Hz)	$\Delta V dB^4$ attenuation
Choir loft Timber floor	0.42	0.44	x-x y-y z-z	30-200 30-200 30-200	76.9 ²	4
Choir loft Facade windows	0.12	0.13	x-x y-y z-z	30-110 30-200 30-200	125 ³	15
Ground floor	0.11	0.12	x-x y-y z-z	30-150 30-160 30-100	66.7 ³	16
Basement	0.27	0.27	x-x y-y z-z	30-160 30-160 30-125	66.7 ²	9
Sidewalk (Ref.)	0.65	0.72	x-x y-y z-z	30-100 30-100 30-100	71.4 ²	0

¹ Refers to the maximum frequency range

² Refers to the confidence interval for 90% probability of exceedance for ppv \geq 0.05mm/s

³ Refers to the confidence interval for 90% probability of exceedance for ppv≥0.025mm/s

⁴ Refers to the maximum velocity vector V_R

Georgios Karanikoloudis / Risk management applied to cultural heritage buildings. The effect of soil settlements and vibrations induced by underground structures.

7

5.7%

Historic masonry facades Brick masonry piers and spandrels Numerical model validation

Historic masonry facades • Brick masonry piers and spandrels

In-plane capacity of URM perforated walls (piers and spandrels) and reparability, under differential settlements

Reference facade / brick masonry with lime mortar Location: Valladolid, Spain / Construction date: 1908

Source: Camino Olea,M.S. (2001) PhD Thesis: Construcción y ornamentación de las fachadas de ladrillo prensado, al descubierto, en la ciudad de Valladolid University of Valladolid, Spain.

Historic masonry facades • Brick masonry piers and spandrels

FE model validation: Historic façade ⇔ Testing assembly

Historic masonry facades • Brick masonry piers and spandrels

Basic mechanical characterization tests (90days) Diagonal compression

Historic masonry facades • Brick masonry piers and spandrels FE model validation: Historic façade ⇔ Testing assembly

Historic masonry facades • Brick masonry piers and spandrels FE model validation: Historic façade ⇔ Testing assembly

Specific weight

 ρ (kN/m³)

19

7.8

24

78.5

Mock-up test: Piers and spandrel from hollow commercial bricks

Commercial hollow bricks 30x20x15; fm: 2.5-4.9 MPa; ρ: 5-7 kg [Martins 2018]

Mock-up test: Piers and spandrel from hollow commercial bricks

Vert. uplift: 2cm

Vert. uplift: 4cm

Vert. uplift: 6cm

Vert. uplift: Bon

Mock-up test: Piers and spandrel from hollow commercial bricks

- In-plane capacity of URM perforated walls (piers and spandrels) and reparability, under differential settlements.
- Failure modes and resulting crack patterns. Influence of unit interlocking, lintels, boundary and loading conditions.
- Movable pier base to rotate freely, but not out-of-plane.
- Hydraulic system of jacks kept under a constant pressure.
- □ Acquisitions of intermediate steps for documentation and monitoring.
- Relative deformations, rotations, sliding, drifts.
- UN-1: Jul. 2019, UN-2: Nov. 2019, UN-3: Dec. 2019, UN-4: Feb. 2020

Thank you

Acknowledgments

Partly supported by FCT (Portuguese Foundation for Science and Technology) within ISISE project UID/ECI/04029/2013