Risk analysis of bridges using a new reliability-based robustness assessment methodology

Hugo Guimarães

Agenda

- Motivation and Research Goal
- Metamodeling-based methods for reliability analysis
- Framework for robustness assessment
- Case studies
- Additional Contributions
- Conclusions and Future Developments

Bridge Management Systems

Bridge Management Systems

Recent Events

... More than **40 bridge failures** were reported since 2014!!!

... Majority of them was made by concrete

... Main reasons were:

- Faulty design or construction error
- Loss of Key elements by:
 - Collision
 - Landslide
 - Scour
- Poor Maintenance

Recent bridge failures

Recent bridge traffic disruptions

Research Goal

The goal is to contribute new generation of risk-based bridge management systems

Robustness assessment methodology

... System-level performance

... Wide spectrum of Key Performance Indicators

Reliability analysis

Consequence analysis

... More than 40 papers were reviewed!

"Metamodeling-based methods for reliability analysis: a comparative review and insights for future developments" will be submitted to Reliability engineering and System Safety

Metamodels

Response Surface Methods	$\hat{G}(\mathbf{x}) = \beta_0 + \sum_{i=1}^d \beta_i \mathbf{x}_i + \sum_{i=1}^d \beta_{ii} \mathbf{x}_i^2 + \sum_{i=1}^{d-1} \sum_{j=1}^d \beta_{ij} \mathbf{x}_i \mathbf{x}_j + \epsilon$
Kriging or Gaussian Process	$G(\mathbf{X}) = \mathbf{f}(\mathbf{X})^{\mathrm{T}}\boldsymbol{\beta} + Z(\mathbf{X})$
Artificial Neural Networks (ANN)	$\tilde{z} = g_N \left(\sum_{j=1}^{k_m} w_j^b x_j + \varpi \right)$
Support Vector Machines (SVM)	$G(\boldsymbol{x}) = \operatorname{sgn}\left[\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \operatorname{Kf}(\boldsymbol{x}_{i} \cdot \boldsymbol{x}) + b^{*}\right]$
Polynomial Chaos Expansion (PCE)	$Z = \mathcal{W}(\xi) \approx \sum_{l=0}^{P-1} c_l \psi_l(\xi)$

... Benchmarking methods is not a straightforward task! Still a reduced list of test examples was selected.

Dynamic Problem with 6 RV

3-bay 5-story Building Frame (21 RV)

Developed Method - iRS

- ... Main features
- Optimized DoE
- Double weighted regression technique
- Stepwise Selection
- Region of Interest
- Cross-Validation
- Cl based on bootstrapping

$$w_g = \alpha_g \cdot \frac{g_{\text{best}}^g}{|g(\mathbf{x}_i)|} \text{ and } g_{\text{best}}^g = |\min|g(\mathbf{x}_i)|$$
$$w_d = \alpha_d \cdot \frac{g_{\text{best}}^d - ||\mathbf{x}_i - \mathbf{x}_d||}{g_{\text{best}}^d} \text{ and } g_{\text{best}}^d = \max||\mathbf{x}_i - \mathbf{x}_d||$$

An innovative adaptive sparse response surface method for structural reliability analysis

Hugo Guimarães^{a,*}, José C. Matos^a, António A. Henriques^b

Structural Performance Assessment

Transportation Network

Normalized risk indicator which considers <u>consequences</u> of disruption

Transportation Network

Hugo Guimarães / Risk analysis of bridges using a new reliability-based robustness assessment methodology

Case studies

... Short-span RC bridge studied by Wong et al. (2005)

- 1. Several numerical difficulties were encountered using classical RSM (Wong et al. 2005)
- 2. Typical configuration of highway overpasses
- 3. Life-cycle performance assessment

Simply supported girder bridge

G(X) = LF(X) - LL

Target reliability based on Ghosn and Yang (2014) NCHRP Report 776

Simply supported girder bridge

Tercenas Bridge

Tercenas Bridge

The structure presents a satisfactory reserve capacity and redundancy.

Comparing Performance

Simply supported bridge

Tercenas Bridge

Additional Contributions

承 ReliaLAB 1.0 by Hugo Guimarães	- 🗆 X	
Welcome to ReliaLAB (Version 1.0)		
Please select Input type:	Software Copyright © 2017-2019 of Hugo Guimarães [hugoguimaraes@civil.uminho.pt] Option Description	
Options Run from Local Database Import from Excel file Run Matab script Graphical user interface (GUI)	Reliability literature problems in local database included in the installation package.	
Please select Folders Directories: Load Folder C:\Users\hugom\Dropbox\PhD\Reliability analysis\Matlab Routines\NFERAlab\\nputfiles\ReliaLAB		
Save Folder C:\Users\hugom\Dropbox\PhD\Reliability analysis\Matlab Routines\WFERA\ab\Inputfiles\ReliaLAB\Results		
End User License Agreement		
This software is Copyright © 2017-2019 of Hugo Guimarães (UMinho). All rights reserved. This end-user license agreement is intended only for academic use in academic institutions (i.e. universities and public research centers) for non-commercial academic purposes. If you want to use the software for different purposes please contact us at: hugoguimaraes@civil.uminho.pt		
I have read and accept the End User License Agreement	User's Guide Continue Cancel Reset	

Conclusions

- Research needs vs Research Goals
- Challenges and solutions in metamodeling-based reliability
- Alternative approach to prioritize maintenance actions in bridges
- Contributions to academical and practical environment

Future Developments and suggestions to research

- Introducing clustering algorithms to deal with multiple failure modes
- Performance metrics at network level can still be improved and include probabilistic nature (flow-based and topology-based)
- Extend and disseminate developed software
- Include multiobjective optimization in the proposed framework