
RISK-BASED ANALYSIS OF BRIDGE SCOUR PREDICTION WITH LIVE BED CONDITIONS

Third year workout

Student: Ana Margarida Bento (LNEC - FEUP)

Supervisors: Dr. Teresa Viseu (LNEC), Dr. Lúcia Couto (LNEC); Dr. João Pedro Pêgo (FEUP)

universidade de aveiro

ANALYSIS AND MITIGATION OF RISKS IN INFRAST RUCTURES | INFRARISK-

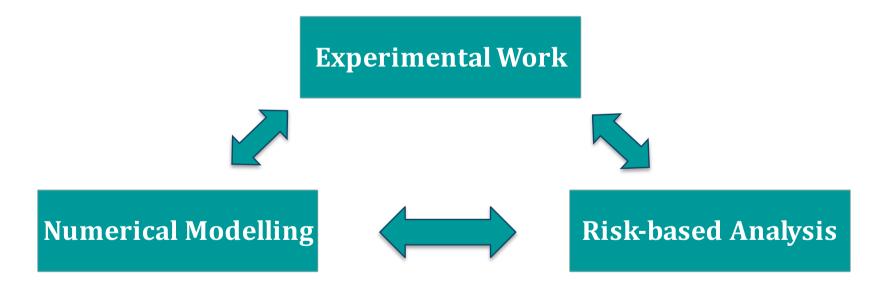
Outline

Introduction

- **Objective and Approaches**
- Work Done
- Work in Progress
- Planned Work
- Work Chronogram

Introduction

Bridge scour is widely recognized as a **major cause of bridge collapses**. Over a period of **30 years more than 1000 bridges** have **collapsed** in USA, **60%** of which as **result of scour at the bridge foundation level**.



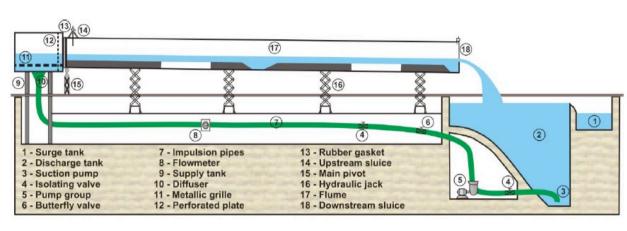
Schoharie Creek bridge, NY, USA, 1987

Hintze Ribeiro bridge, Portugal, 2001

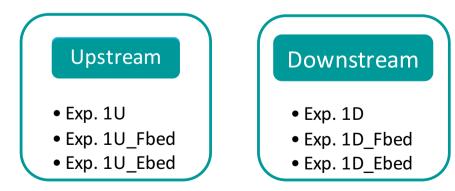
Objective and Approaches

Development of a **risk-based methodology** to estimate the **probability of failure** of bridge foundations under **clear water** and **live bed flow conditions**

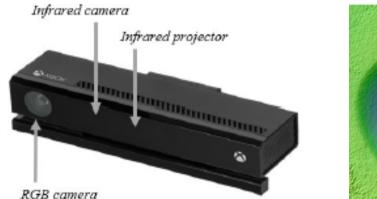
Work Done

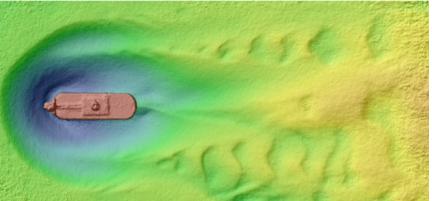

from the last workout ...

Experimental Work	Numerical Modelling	Risk-based Analysis
Conduction of the	Creation of the	Compilation of field data
first experimental run – RUN 1	numerical mesh for the tilting flume and establishment of the	Definition of the risk approach and
Collection and treatment of the	initial boundary conditions according to experiments	methodology Statistical
first experimental results		modelling of the hydrological and hydraulic variables

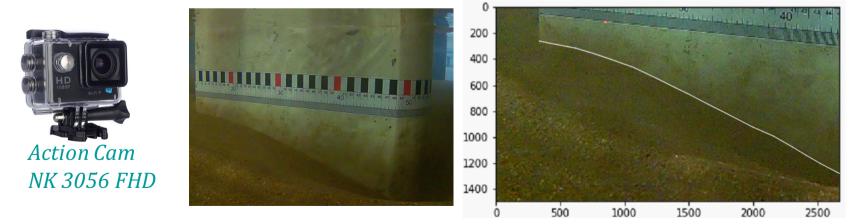

Twelve Experimental Runs were defined

CIV (LNEC): 40 m long, 2 m wide and 1 m deep


		$V/V_c = 0.95$	j	$V/V_c = 1.30$						
	h_1	h_2	h_3	h_1	h_2	h_3				
Pier 11	<i>Exp.</i> 1U	<i>Exp</i> . 2U	-	<i>Exp</i> . 4U	<i>Exp</i> . 5U	-				
Pier 14	<i>Exp.</i> 1D	-	<i>Exp</i> . 3U	<i>Exp</i> . 4D	-	<i>Exp</i> . 6U				
Pier 17	-	Exp. 2D	<i>Exp</i> . 3D	-	<i>Exp</i> . 5D	<i>Exp</i> . 6D				
Run	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6				

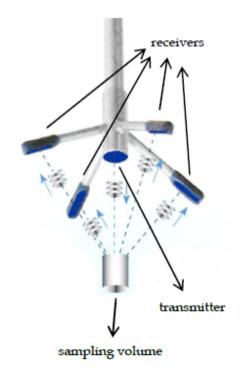


Scour hole morphology


□ Temporal evolution of **d**_s: **Hydrometers** at the pier fronts

□ 3D: **Kinect V2 sensor** vs **Close-range photogrammetry**

Underwater image processing: during the scouring process


Flow field characterization

- □ Flow discharge control: electromagnetic flowmeter
- □ Flow depth control: acoustic and resistive probes, hydrometers along
 - CIV, and rulers along the lateral glass windows

Downlooking vectrino

- □ **Instantaneous flow field** in two different moments:
 - at *fixed flat bed*at a fixed eroded bed

Moving carriage for Vectrino at CIV

Work Done

from the last workout ...

Experimental Work

Conduction of the first experimental runs – RUN 1 and RUN 4

Collectionandtreatmentofthefirstexperimentalresults - RUN 1

Numerical Modelling

Creation of algebraic and elliptical numerical meshes for the experimental boundary conditions

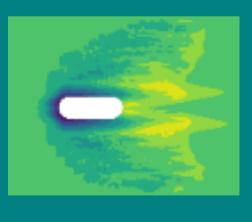
Afonso, Alexandre; Miranda, João; Araújo, José Daniel; Alves, Manuel; Silva Santos, Carlos; Rodrigues, Carlos; Ferrás, Luís; Nóbrega, Miguel; Resende, Pedro; Carvalho, Rita F.; Mould, Sacha; **Bento, Ana Margarida**. "3rd Iberian Meeting of OpenFOAM® Technology Users". Porto: FEUP Edições, 2019. ISBN 978-972-752-258-3.53 p Risk-based Analysis

Compilation of field data

Definition of the risk approach and methodology

Statistical modelling of the hydrological and hydraulic variables

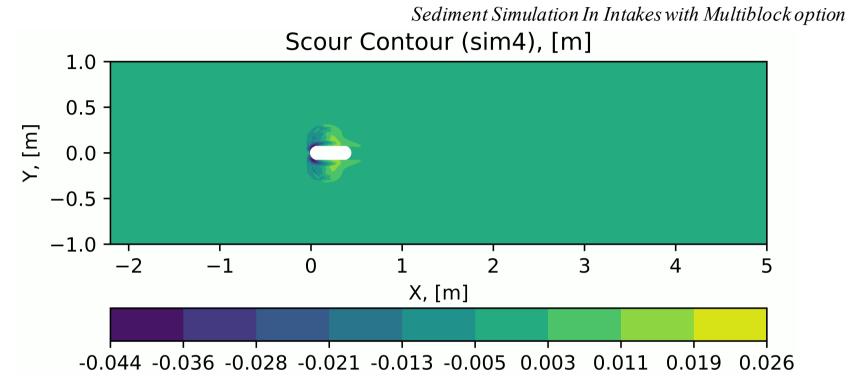
Work in Progress


Experimental Work

Conduction of RUN 4

Numerical Modelling

Simulation of the **turbulent flow field** and **scour patterns** at **erodible beds**



Risk-based Analysis

Statistical modelling of the hydrological and hydraulic variables

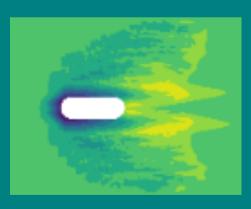
Generation of the Digital Terrain models, through topographic and batimetric measurements

SSIIM software

	sim1	sim2	sim3	sim4							
computational domain (m)	:	3.35 x 2.0	5.55 x 2.0								
bed shear stress		0.03047	0.0348	0.0355							
bed roughness	0.0051										
turbulence model	k-epsilon										
time step (s)	5										
vertical cross-sections	21	19	19	19							
1 st bed cell height (%)	3.0 3.6										

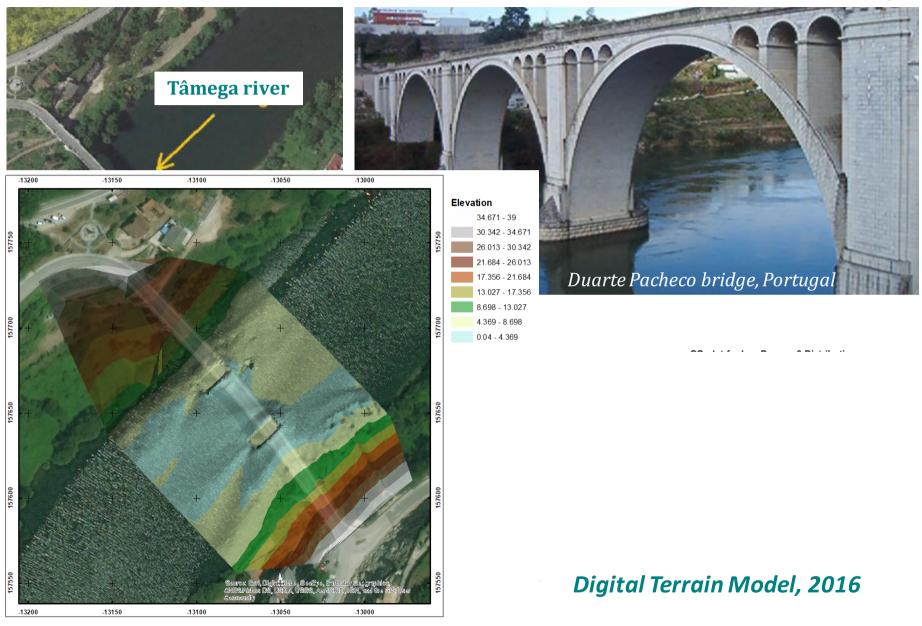
Ana Margarida Bento / RISK-BASED ANALYSIS OF BRIDGE SCOUR PREDICTION WITH LIVE BED CONDITIONS

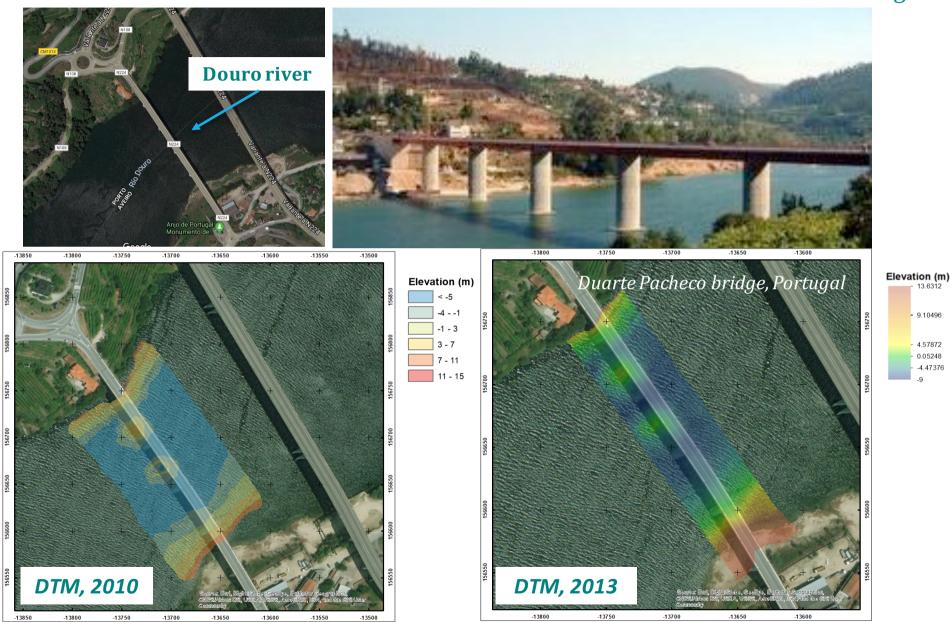
Work in Progress


Experimental Work

Conduction of RUN 4

Numerical Modelling


Simulation of the turbulent flow field and scour patterns at erodible beds


Risk-based Analysis Statistical modelling of the hydrological and hydraulic variables

GenerationoftheDigitalTerrainmodels(DTMs),byusingtopographicandbatimetricmeasurements(InfraestruturasdePortugal)

Duarte Pacheco bridge

Hintze Ribeiro bridge

Ana Margarida Bento / RISK-BASED ANALYSIS OF BRIDGE SCOUR PREDICTION WITH LIVE BED CONDITIONS

Approach for bridge scouring risk analysis

- Method: Hydrological modelling (probabilistic)
- Results: Flood characteristics; Maximum discharge for different return

Assessing weather events (source) Modelling river behaviour (pathway)

- Methods: Hydraulic modelling (HEC-RAS) and CFD Scouring modelling
- Results: Water levels, velocities, maximum scour depth

- Methods: Scour risk rating (qualitative risk analysis method)
- **Results:** Relative scour depth, failure factor, susceptibility to scour

Assessing bridge response (consequences)

Bento, A.M., Viseu, T. Couto, L., Pêgo, J.P. Methodology for bridge scouring risk analysis (under development)

Planned Work

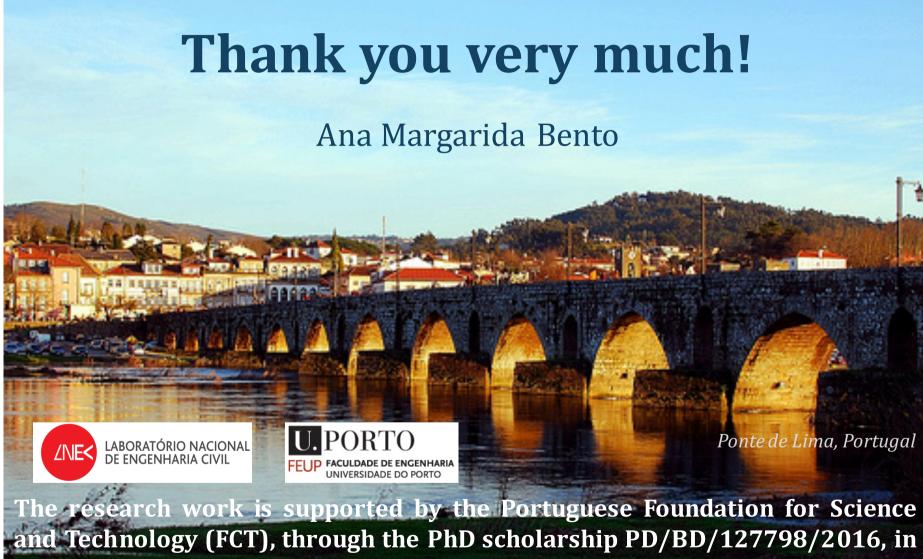
Experimental Work

Conclusion of the experimental campaign and data treatment

Publish a research paper with the experimental findings Numerical Modelling

Conclusion of the numerical simulations prescribed for this PhD work

Submit/Publisharesearchpaperwith the numericalresults


Risk-based Analysis

Application of the failure criteria to the already selected Portuguese bridges

Submit/Publish the risk-based analysis paper, applied to the case studies, under elaboration.

Work Chronogram

work Unronogram		2016 2017			2018			2019				2020					
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Curricular courses																
Literature review																	
rk	(i) Adaptation of the tilting flume at LNEC's Pavilion to conduct local scouring experiments with the specificities of the present study																
ental work	(ii)Conduction of trial runs, employing sophisticated measurement techniques for a comprehensive characterization of the scour hole around an oblong bridge pier model																
Experimental	(iii) Definition of the experimental campaign, procedure and measuring techniques																
ШЩ	iv) Execution of the experimental campaign																
	v) Collection and treatment of the experimental results													(Octob	er 201	9
ng	(i) Selection of the appropriate CFD tool(s) for simulating the local scouring phenomenon																
Numerical Modelling	(ii) Creation of the numerical mesh for the tilting flume and establishment of the initial boundary conditions according to experiments																
cal	iii) Simulation of the turbulent flow field at fixed flat and eroded beds																
Imeri	iv) Simulation of the turbulent flow field and scour patters at erodible beds																
ž	v) Adaptation of the numerical tool(s) for predicting the scouring process at Portuguese bridges														F	ry 2020	
	 (i) Selection of Portuguese bridges which foundations have an oblong shape, as selected for the experimental work 																
Analysis	(ii) Compilation of information of bathymetry, bridge structural characteristics, channel cross-sections, longitudinal bed slopes, bed roughness, hydrological and hydraulic data of the selected Portugues e bridges																
Risk-based	(iii) Statistical modelling of the hydrological and hydraulic variables for the selected Portuguese bridges																
Risk-k	(iv) Definition of the failure criterion/criteria to scour depth at bridge foundations																
	(v) Derivation of empirical cumulative distribution functions of exceedance of the failure criterion/criteria and evaluation of risk failure of Portuguese bridges																July 2020
	Publishing																Aug 2020

the framework of the Doctoral Program INFRARISK.

TÉCNICO

