STOCHASTIC MODELLING OF FLUVIAL MORPHODYNAMICS

Bruno Oliveira

STOCHASTIC NUMERICAL MODELLING OF FLUVIAL MORPHODYNAMICS

Bruno Oliveira / Stochastic Modelling of Fluvial Morphodynamics

Main Objectives

Work Plan

- Collection of in-situ information from case study(ies)
- Collection of historical ecords **AND NOW...**
- Stochastic Series Generation
- Development of the hydro et episote amic models
 - Model Selection and Integration
- Application of t
- Sensitivity ana
 - Analysis of
 - Etc.
- Statistical char
- Risk Analysis

Bruno Oliveira / Stochastic Modelling of Fluvial Morphodynamics

Previous year

Statistical Characterization of Morphodynamics (Mondego River)

- Case study reach Specific section(s):
- Erosion magnitude
- Erosion profiles

Risk Analysis (Stability Analysis)

Retention wall situated 20 meters from the river:

- Necessary for N110 road
- Steep implantation slope
- Situated at an exposed edge of the road (due to curvature)

Bruno Oliveira / Stochastic Modelling of Fluvial Morphodynamics

Risk Analysis (Stochastic Modelling)

Included

- 10 values of Shear Angle
- 10 values of Dry Density of Soil
- 10 values of Dry Density of Landfil
- 25 selected erosion profiles
- 140 rotational centres
- Av. 5 radius per centre

≈ 17.5 Mil. Limit State Analysis

For the 1Y and 2Y horizons

Variable	Symbol	Distribution	Parameters		Linite
			а	b	Units
Shear Angle	$\Phi_{\rm r}$	Uniform	34	38	⁰ (degrees)
Dry Density of the soil	γs	Uniform	20	22	KN/m³
Dry Density of the landfill	γ_{wall}	Uniform	21	23	KN/m³

Risk Analysis (Failure Likelihood)

Transformed into a probability distribution of failure as a function of the critical safety factor:

Considering a geometrical decay of the failure likelihood (from bank stabilization):

Risk Analysis (Application)

Adding the expected costs from:

- Bank protection (40 000 €)
- Bank and wall repair (160 000 € on collapse)
- Active Monitoring & Rehabilitation (15 000 € + 3 000 €/yr)

And the corresponding likelihoods:

Finished Products

Thesis

Publications:

- Stochastic Generation of Streamflow Time Series
- Pre-modelling as tool for optimizing morphodynamical numerical simulations
- Sensitivity Analysis of Fluvial Morphodynamics

Other papers underway...

Manual:

"APPLICATION METHODOLOGY FOR THE STOCHASTIC MODELLING OF FLUVIAL MORPHODYNAMICS"

	FEUP INCLUDED DE PORTO
Stoc	hastic Numerical Modelling of Fluvial Morphodynamics
	Bruno André Machado Andrade Oliveira
Dissertation s	ubmitted towards the partial fulfilment of the requirements for the degree of DOCTOR IN CIVIL ENCINEERING
	Bupervisor: Professor Rodrigo Maia
	Co-supervisor: Professor Francesco Ballio
	December 2018

Questions: More or Less?

About the stochastic modelling:

- Would simulating a large number of quantile-matched values of the variables be equivalent to Crude Monte Carlo? Which is more efficient?
- Can the results of the simulations be extrapolated (i.e., convoluted) over time? Globally or Locally?
- What are the best probability distributions for morphodynamical quantities? (namely for extreme, localized and global values)

About Reliability and Risk Analysis

• How significant are the errors introduced by the applied interpolation?

DARIUS FOROUX

Thank you for your attention!

