Seismic Risk OF PreCode RC Buildings Retrofitted with Jacketing

RC Building of up to 4 Storeys in Metropolitan Area of Lisbon

Sanam Moghimi

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

Thesis Plan Scheduling

Seismic Risk Mitigation Thesis	Fi	rst `	Year	Sec Y	cond ear	TI	hird	Yea	r	Fo	orth	Ye
Essential Courses									-			
Literature Review									I			
Data Collecting												
Research Methodology Plan												
Selection of appropriate research techniques									i			
Studying the current LNECLOSS Platform									I			
Development of Structural Methodology												
Choosing the Mitigation Techniques												
Calculate Attractiveness of Mitigation Alternatives												
Determining the Direct Costs of Mitigation Alternatives												
Determining the Benefits of Mitigation Alternatives												
Choosing the Best Alternative												
Submission of ISI Journal												
Writing up and Dissemination of the Thesis												

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

LNECLOSS+

- Numerical Modelling VS Expert Opinion
 - Seismostruct FEA program
 - 500 buildings
 - Two directions of earthquake (X,Y)
 - Adaptive pushover analysis
- Capacity Functions
 - Seismostruct FEA program
 - 500 buildings
 - Two directions of earthquake (X,Y)
- Cost Functions

97% of building stock < 5 storeys

 \approx 70 % of building stock was not designed against earthquakes and is potentially vulnerable to seismic actions

Seismic code in force (RSA, 1983)

1,500,000

Vulnerability and inventory definition

Case Study Area

• Metropolitan Area of Lisbon - MAL

Ground type	Stratigraphic profile	<i>v_s</i> [m/s]
А	Rock and hard soil	> 350
В	Intermediate soil	200-350
С	Soft soil	< 200

Case study: RC Portuguese pre-seismic code building stock up to 4 storey

		Variáveis	Média	CV (%)	Α	В	Referência
		G (kN/m ²)	8	12.5	6	10	Sousa <i>et al</i> ., 2016
		N° pisos	1/2/3/4	28/42/15/15	-	-	Censos, 2011
		H ₁	3.2	10	2.5	5	
Existina buildinas	L -	H _n	2.8	6	2.5	4	Silva <i>et al</i> ., 2014
5 5		L _{x/y} (m)	4.4	16	2.5	6.5	Furtado <i>et al</i> ., 2015
		h _{laie} (m)	0.23	24	0.1	0.35	
		f _{cm} (MPa)	23.8	49	5.0	80.0	Silva <i>et al</i> ., 2014
		f _{yk} (MPa)	235/400/500	25/50/25	-	-	Silva <i>et al</i> ., 2014
		ρ _ι (%)	1	40	0.3	3.5	Furtado <i>et al</i> ., 2015 Sousa <i>et al</i> ., 2016

Variables of material and geometry properties

Soil_class

Hard soil

Soft soil

RC Non ductil

med/high rise

Interm. soil

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

Retrofit Solution

Retrofit Solution

Technique for Column Jacketing

Properties of Jacket (Shri. Pravin B. Waghmare, 2011)

Percentage of steel in the jacket between 0.015and 0.04 of jacket Area

Minimum width of jacket 10 cm for concrete castin-place

Jacketing factor varies: 2R, 3R results in 2 scenario of Retrofit Solution

New Concrete C30/35 New Steel A400

Capacity Curve of Retrofit Scenarios

Capacity Curves

$$S(x,i) := if\left(x \le Dy_i, if\left(Dy=0, 0, x \cdot \frac{Ay_i}{Dy_i}\right), if\left(x \le Du_i, c_i \cdot sin\left(acos\left(\frac{x - Du_i}{a_i}\right)\right) + d_i, Au_i\right)\right)$$

Least Mean Square Root

[Ay,Dy], [Au,Du]

Ay = Cs γ / α Dy = Ay Te² / $(2\pi)^2$ $Du = \lambda \mu Dy$

Au = λ Ay

$$P_{D}(D \ge d | Sd) = \Phi\left[\frac{1}{\beta_{d}}\ln\left(\frac{Sd}{\overline{Sd_{d}}}\right)\right]$$
$$\overline{Sd}_{d} = \delta_{d} \cdot \alpha_{2} \cdot h$$

- Limit States Maximum global drift
 - Slight Damage (SD)
 - The structure is only slightly damaged and economic to repair
 - 50% of Maximum Base Shear is achieved

- Limit States
 - Slight Damage (SD)
 - The structure is only slightly damaged and economic to repair
 - 50% of Maximum Base Shear is achieved
 - Moderate Damage (MD)
 - The structure is moderately damaged
 - 75% of Maximum Base Shear is achieved

- Limit States
 - Extensive Damage (ED)
 - The structure is significantly damaged
 - 100% (Maximum) Base Shear is achieved

- Limit States
 - Extensive Damage (ED)
 - The structure is significantly damaged
 - 100% (Maximum) Base Shear is achieved
 - Collapse (C)
 - The structure is completely damaged
 - 80% of Max Base Shear is achieved

Capacity Curves – 4storeys buildings

Capacity Curves – 3storeys buildings

Capacity Curves – 2storeys buildings

Capacity Curves – 1storey buildings

Limit States for No Confinement 7.2M Vale inf Tejo

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

Hazard: Seismic input Identification

Scenario of Earthquake

Return period

Inland						
Name	Μ	x	Y			
Vale inf Tejo	6	124743.00	220791.00			
Vale inf Tejo	6,9	124743.00	220791.00			
Vale inf Tejo	7,2	124743.00	220791.00			
Benavento	6.9	140348.00	220658.00			
offshore						
Name	М	X	Y			
1755 Earthquake	8.5	-10814.0	-6607.0			

Inland		Offshore				
Return Period	м	Return Period	м			
40	5.5	100	7			
100	6	300	7.5			
200	6.5	475	7.7			
475	6.7	600	8			
975	6.9	975	8.2			
1300	7	2800	8.5			
5000	7.2	5000	8.7			

Sc1_1	8,5M 1755] cuton	
Sc2_1	6M Vale inf Tejo		
Sc2_2	7,2M Vale inf Tejo	। 🍊 🕹	A A A A
Sc2_5	6,9M Benavente	₹ \$	
Sc2_6	6,9M Vale inf Tejo		MAL

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

Defining the Loss Area

- Slight Damage (SD)
- 2% of structure is slightly damaged
- Moderate (MD)
- 10% of structure is damaged
- Extensive Damage (ED)
- 50% of structure is significantly damaged
- Collapse (C)
- 100% of structure is completely damaged

Damage states	Loss Ratio
Slight	2%
Moderate	10%
Extensive	50%
Collapse	100%

Vulnerability Classification

Vulnerability Classification	Sum of Area_total_m2
Masonry	67,414,361
RC Medium Ductility	66,564,130
RC Non ductil - low rise	64,408,564
RC Non ductil - med/high rise	36,580,119
Grand Total	234,967,173

	7	,2 M - Lower Vale de	Тејо						
Vulnerability Classification	OldLNECLoss								
	Sum of Loss(m^2)								
	Hard soil	Interm. soil	Soft soil	Grand Total					
Masonry	493,928	626,298	307,217	1,427,443					
RC Medium Ductility	94,772	141.071	66.671	302,513					
RC Non ductil - low rise	43,255	81,748	23,711	148,714					
RC Non ductil - med/high rise	43,773	38,405	31,871	114,050					
Grand Total	675,728	887,522	429,469	1,992,720					

Importance of case study: Example of results

- Total Damaged Area
 - 7,2M Vale inf Tejo
 - No Confinement
 [Original buildings]
 - All typologies

Importance of case study: Example of results

Damaged Area (m²) for Case Study 8.5M 1755

Damaged Area (m²) for Case Study <u>6,0M Vale inf Tejo</u>

Old Lnecloss No confinemnet

Present study No Confinement Jacketing 3R

Relative contribution to Damaged Area Different Retrofit Strategies, 7,2M Vale inf Tejo

Relative contribution to Damage Area Different Earthquake Scenarios

Damaged area vs. Soil type vs. Scenario 6,0M vs. 7,2M Vale inf Tejo for No Confinement

Damaged area vs. Soil type vs. Retrofit Strategy No Confinement vs. RC Jacketing 3 for 7,2M Vale inf Tejo

Uncertainty propagation example

- Uncertainty in the determination of Target Displacement
 - Contribution of Capacity Curves variability (TD1)
 - Contribution of Seismic Spectra variability (TD2)

Standard deviation (β) of TD, assuming LOGNORMAL Distributions for both variables:

Outline

- Background
- LNECLOSS+
- Retrofitting Solutions
- Scenarios of Earthquake
- Risk Mitigation
- Future Development

Future Development:

- Review the damage to cost function
 - Repair techniques for each limit states
 - Measuring cost of repair (direct/indirect)
 - To value the loss of properties
- Develop the cost model to related retrofit solutions
- Develop a model for benefits
- Cost benefit algorithm to find the suitable solution

Thank You for Your Attention

