Development of BRD_AL Prototype

Development of aluminium alloy hysteretic damping system for seismic retrofitting of pre-coded reinforced concrete buildings

Ricardo Sousa Alves Ferreira

Supervisors:

Professor Jorge Proença (PhD, Associate Professor IST, CERIS Senior Researcher)

Professor António Gago (PhD, Associate Professor IST, CERIS Senior Researcher)

Development of BRD_AL Prototype

Outline of the Doctoral Programme

Introduction:

- The problem
- Objectives

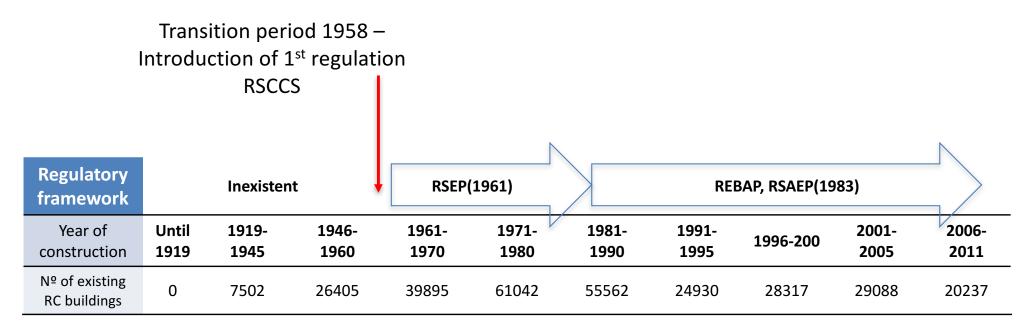
An overview of the State of

the art:

- Hysteretic yielding devices
- Aluminium Alloys
- BRD_AL prototype

Methodology:

- Assessment of aluminium alloys behaviour;
- Assessment of device behaviour (local analysis);
- Analysis of device behaviour (global analysis);
- Case study Analysis


universidade

U. PORTO

* 🔿

The problem - Seismic risk of pre-coded buildings

Quantification of RC buildings in Lisboa (INE Census 2011)

Estimate:

Nº of existing RC Buildings design without seismic provisions: > 26.000 buildings

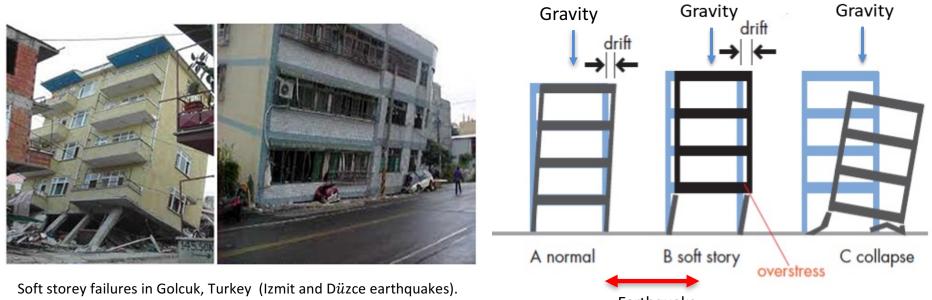
universidade de aveiro

Nº of existing RC Buildings designed with outdated seismic provisions: > 100.000 buildings

The problem - Pilotis Buildings

Construction of several buildings during the 50's and 60's, with particular characteristics:

- Commonly used in residential areas;
- Main volume + slender columns in transition to ground level;
- Seismic behaviour of this building typology – occurrence of soft-storey phenomena



TÉCNICO LISBOA

The problem - Soft-storey phenomena

Source (AIR)

TÉCNICO

ICIST

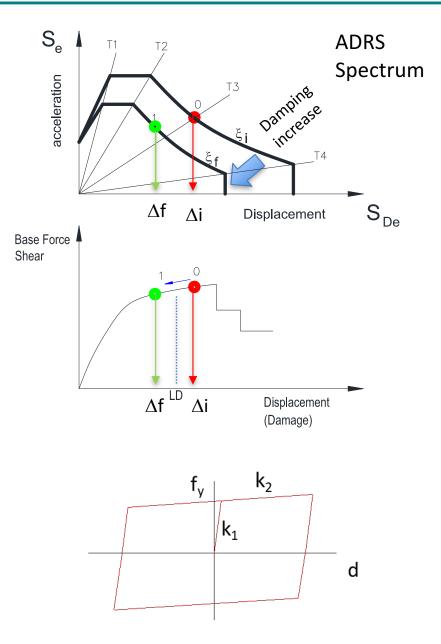
- Earthquake
- Abrupt stiffness transition between building body and supporting slender columns, resulting in significant overstress on transition cross-sections of the supporting columns;
- Pilotis buildings constructed in Lisbon during the 50's and 60's of the last century • where not designed for seismic action and are prone to this type of phenomena in case of a moderate to high seismic event.

Earthquake Engineering - Earthquakes and Tsunamis

The objective – Drift reduction Δ

- The reduction of drift ∆ can be attained by the increase of structural damping;
- Hysteretic damper can be an efficient and economical way to increase damping (ξ), enabling the structure to comply to a certain limit damage (LD);
- Hysteretic dampers take advantage of the deformation capacity of metallic elements, usually steel;
- Damping provided by the device is determined by its dissipative capacity in each cycle;
- The hysteretic behaviour control parameters are K₁(initial stiffness), K₂(postyield stiffness) and F_y(yield strength).

ZNE<


U. PORTO

universidade

de aveiro

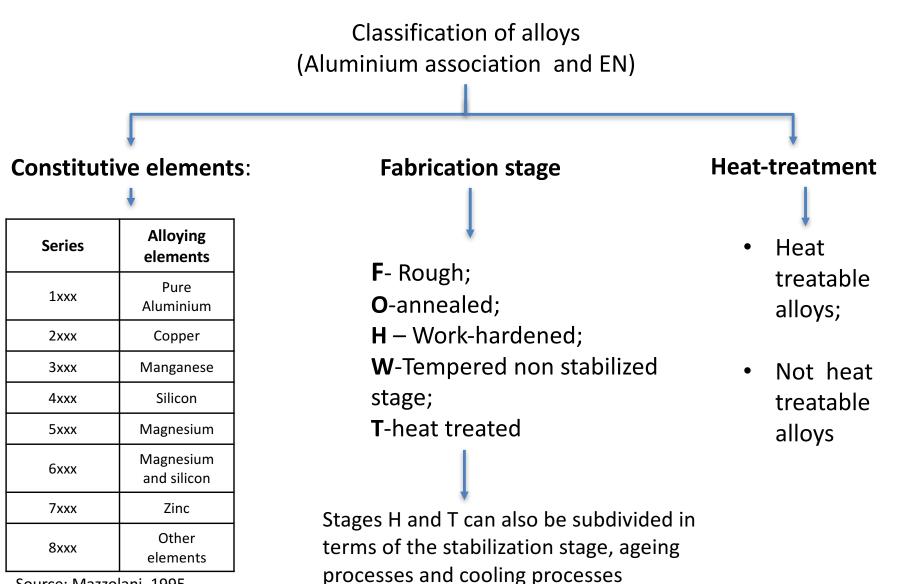
TÉCNICO LISBOA

I ICIST

State of the Art – Dissipative devices – Brief overview

Classification of devices				
Displacement Dependent	Linear(LD)			
	Non-Linear (NLD)/Hysteretic(HD)	Yielding metal (YMD)		
		Friction (FD)		
Velocity Dependent/Viscous Dampers (VD)	Fluid Viscous (FVD)			
	Fluid Spring (FSD)			
Acceleration dependent				
	Modified Input			
	Combination			

Source : Frederico Mazzolani, Luis Calado, *Introduction to reversible mixed technologies, FP6 PROHITEC project*


Hysteretic behaviour of Buckling Restrained Braces- as a principle for the development of new device

universidade

de aveiro

State of the Art – Aluminium Alloys overview

Source: Mazzolani, 1995

State of the Art – Aluminium Alloys overview

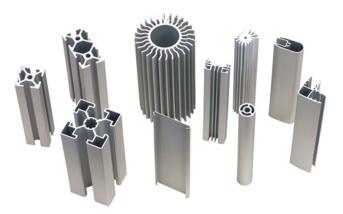
Properties	Aluminium	Steel
Average weight density γ (kg m ⁻³)	2700	7850
Melting point T (°C)	658	1450-1530
Linear thermal expansion, $lpha$ (°C ⁻¹)	24 x 10 ⁻⁶	12 x 10 ⁻⁶
Specific heat, C (cal g ⁻¹)	0,255	0,12
Thermal conductivity λ , (cal cm ⁻¹ s ⁻¹ °C ⁻¹)	0,52	0,062
Electrical resistivity $ ho$ ($\mu \Omega$ cm)	2,4	15,5
Young Modulus, E (N mm ⁻¹)	70 x 10 ³	210 x 10 ³

U. PORTO

State of the Art – Aluminium Alloys overview

Mechanical Properties	Aluminium	Steel
Yield stress f _y (N mm ⁻²)	50-360	235-350
Ultimate stress f _t (N mm ⁻²)	80-410	360-510
Ultimate strain ε _t (%)	10-25	25-30

* 🗘


State of the Art-Aluminium alloys overview

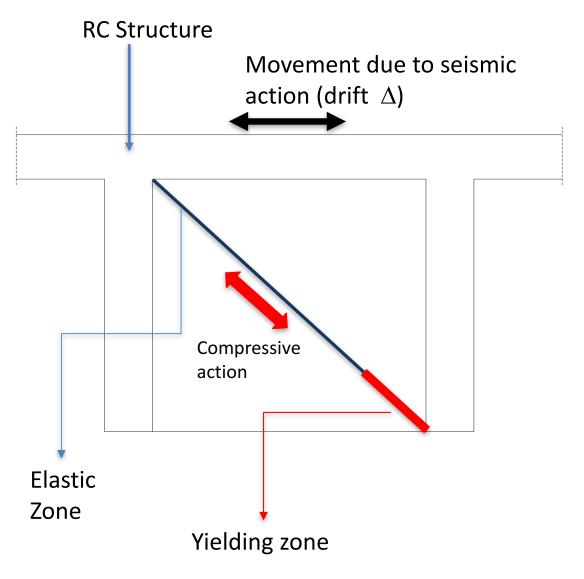
Aluminium Alloys (advantages):

- Capability of production of elements with non conventional cross sections using alternative fabrication processes such extrusion or EDM;
- Ductility;
- Aesthetic appearance;
- Low weight (about 1/3 of the weight of steel);

U. PORTO

- Corrosion resistance;
- Low maintenance;
- Recyclable

Source: World-Aluminium.org


Development BRD_AL Prototype

Objectives:

- Alternative to the dissipative bracing device paradigm: use an extruded aluminium alloy member without infill;
- Light-weight and easy to integrate in bracing system;
- Device that is simple to integrate both in new and existing buildings
- Device capable of withstanding significant plasticization, hence increasing structural damping due to hysteretic behaviour of the aluminium member;

U. PORTO

TÉCNICO

Development BRD_AL Prototype - Methodology

Tasks:

1. State-of the art review, PhD curricular courses, contacts with national and International partners for the development of the device;

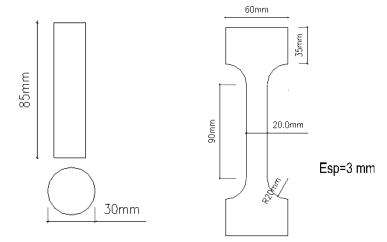
universidade

- 2. Definition of the aluminium alloy.
- 3. Cross section analysis.
- 4. Global Analysis;
- 5. Case study analysis;
- 6. Writing of the thesis

Task 2 – Aluminium Alloy analysis

Experimental campaign of tension and compression tests will be carried out for the characterization of 3 different aluminium alloys.

A pre-determined set of aluminium alloys, based in the EN 1999 reference alloys, will be chosen for testing. The chosen aluminium alloys are:


- EN AW 1050
- EN AW 5054 T6
- EN AW 6061 T6;

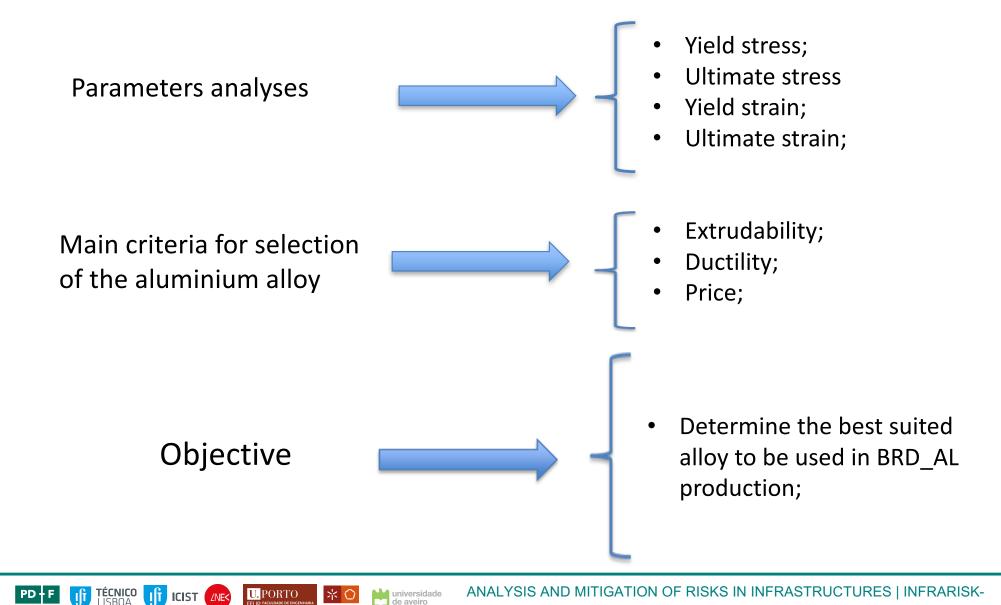
Standards to be used in compression and tension will be:

- EN 10002-1 "Tensile testing -Part 1: Method of test at ambient temperature;
- ASTM E9-"Standard compression testing of metallic materials at room temperature".

U. PORTO

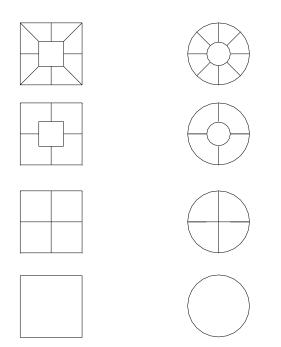
universidade

Compression test specimen


Tension test specimen

This will allow to have a consolidated comparison framework with test already performed by Prof. Mazzolani; and the normative values provided in the EN 1999-1 (EC9) and with analytical definitions like the Ramberg-Osgood formulation.

Task 2 – Aluminium Alloy analysis



Task 3 – Cross section analysis

- Cyclic tests of extruded profiles fabricated using the aluminium alloy determined in the previous task;
- Extruded profiles will be subjected to uniaxial cyclic loading with crescent amplitude until failure, following the recommendations :
 - EN 15129 "Anti-seismic devices";

- ATC 24 "Guidelines for the cyclic seismic testing of components of steel structures";
- ECCS TGW 1.3 1985 "Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads

U. PORTO

universidade

de aveiro

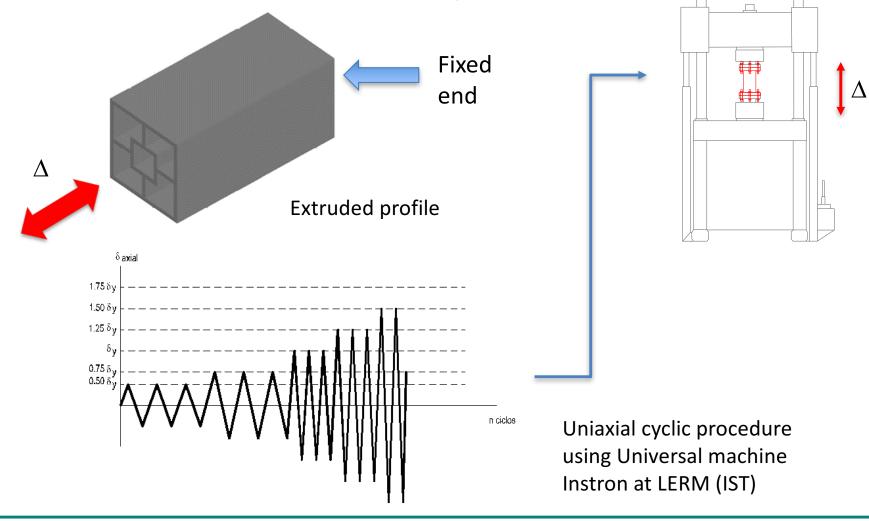
Task 3 – Cross section analysis

TÉCNICO LISBOA

ICIST

ZNE<

PD + F


Loading to be applied to the centre element of the crosssection or to the whole cross-section (to be analysed);

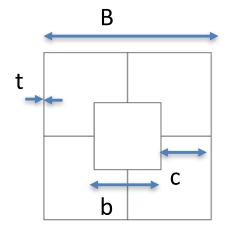
* 🖒

universidade

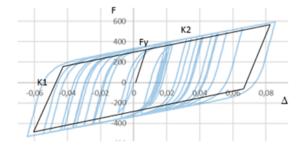
de aveiro

U. PORTO

Task 3 – Cross section analysis Objectives:


- Assessment of the influence on hysteretic behaviour of key parameters:
 - Influence of form;
 - Influence of geometric relationships between

dimensions of the elements of the extruded profile;


- Influence of existing geometric imperfections (w_0).
- Definition of most favourable cross section configuration;

U. PORTO

 Definition of representative numeric model of the element, modelling the isotropic and kinematic hardening phenomena observed during the

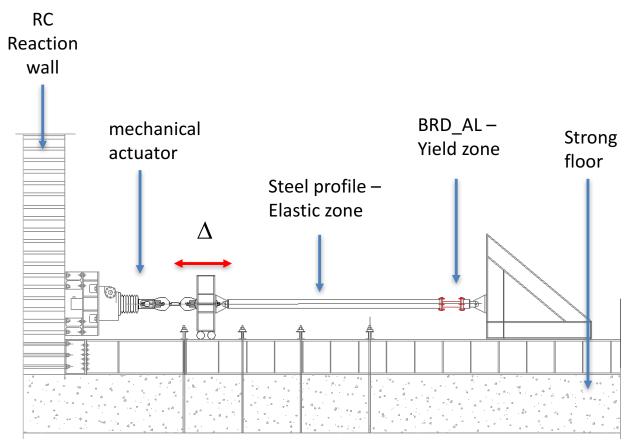
Cross section example

Parametrization of the non linear behaviour of BRD_AL

experimental tests;

If ICIST

ZNE<


TÉCNICO

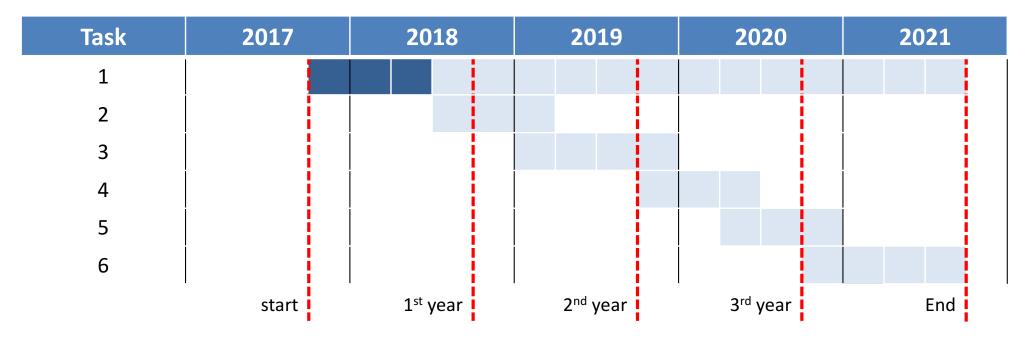
Task 4 – Global analysis - Experimental campaign to analyse the global hysteretic behaviour

Objectives:

- Analysis of the effects of boundary conditions and global in-plane and out-of-plane imperfections on the hysteretic behaviour of the assembly;
- Definition of numeric model global system duly calibrated from experimental results.
- Same loading programme has in task 3

TÉCNICO LISBOA

Task 5 – Case study - Development of numerical analyses of an existing precode pilotis building in Lisbon;


Objectives:

TÉCNICO

I ICIST

- Assessment of dynamic behaviour of the existing pre-code building considering the performance requirements and compliance criteria of EN NP 1998-1 and EN 1998-3;
- Assessment of dynamic behaviour of the case study building when BRD_AL is used has structural retrofitting technique;
- Numerical analyses on the case study building will performed using OpenSees and Built-X numerical software using the numerical model of the non-linear behaviour of BRD_AL duly calibrated during task 4;

Chronogram and tasks

Task 1 – State of the art review, PhD courses of host institution; Contacts with national and international partners for the development of BRD_AL;

- Task 2 Definition of the aluminium alloy. (Mechanical characterization of aluminium alloys);
- Task 3 Cross section analysis (Characterization of the hysteretic behaviour of the BRD_AL);
- Task 4 Global Analysis. (Characterization of the hysteretic of the global system;

U. PORTO

- Task 5 Case study analysis;
- Task 6 Writing of thesis

References

Calado, L., Proença, J. M. and Pavlovcic, L. Chapter 3 - Devices. [book auth.] F. M. Mazzolani. *Earthquake Protection of Historical Buildings By Reversible Mixed Technologies – Volume 2: Seismic Protection of Historical Buildings: Guide to Material and Technology Selection.* s.l. : Polimetrica – International Scientific Publisher, 2012.

Antonucci, R., et al. *Strutture prefabbricate con controventi dissipativi: l'esempio del nouvo polo didattico della Facoltà di Ingegnaria dell'Università Politecnica delle Marche di Ancona.* s.l. : Università Politecnica delle Marche, Ancona [in Italian], 2006.

Federico Mazzolani, Luis Calado, Introduction to reversible mixed technologies, FP6 PROHITEC project

universidade

de aveiro

Almeida, A. B. *Seismic retrofit of reinforced concrete building structures with buckling restrained braces.* s.l. : Thesis submitted in partial fulfillment of the MSc degree in Civil Engineering (Structures) in IST (Supervisors Proença, J.M. and Gago, A.S.), 2011.

EN 10002-1 - "Tensile testing -Part 1: Method of test at ambient temperature;

EN 15129 - "Anti-seismic devices";

ATC 24 - "Guidelines for the cyclic seismic testing of components of steel structures";

ECCS TGW 1.3 1985 - "Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads;

Fahnestock L.A., Sauce R., Ricles J.M., *Seismic response and performance of buckling-restrained braced frames*, Journal of Structural Engineering, ASCE 2007, Vol.133, pp. 1195-1204;

F.M.Mazzolani, A.Mandara, G.Di Lauro, *Plastic buckling of axially loaded aluminium cylinders: a new design approach,* CMIS '04, Fourth International Conference on Coupled Instabilities in Metal Structures, Rome, Italy,27-29 September 2004;

G.Di Matteis,F.M.Mazzolani and S.Panico, *Pure Aluminium shear panels as dissipative devices in moment resisting steel frames*, Journal of Earthquake Engineering and Structural Dynamics, 2007, Vol.36, pp 841-859.

TÉCNICO

References

G.Di Matteis, G. Brando, F.M.Mazzolani, Pure Aluminium: An innovative material for structural applications, Journal of Construction and Building Materials, 2012, Vol.26, pp 677-686. Chu-Lin Wang, Tsutomi Usami, Jyunki Funayama, Fumiaki Imase, Low-cycle fatigue testing of extruded aluminium alloy buckling restrained braces, Journal of Engineering Structures, 2013, Vol.46, pp 294-301. World Aluminium- <u>http://www.world-aluminium.org/publications/</u> European Aluminium - <u>https://www.european-aluminium.eu</u>

Thank you for your attention.

