MITIGATING EARTHQUAKE VULNERABILITY OF MIXED URM-RC BUILDINGS AT THE URBAN SCALE *Characterization of mixed URM-RC building typologies*

Gonçalo Correia Lopes (1st year, U. Aveiro)

Supervision: Romeu Vicente (U. Aveiro), Miguel Azenha (U. Minho), Tiago Miguel Ferreira (U. Minho)

Presentation summary

- Thesis timeline and objectives
- T1: State of the art
 - Highlights
 - Principal stages of the evolution of the RC role in buildings (RC elements shaded in grey)
 - Intervention types for derived URM-RC buildings
 - Structural typologies of derived URM-RC buildings
 - Damages from past earthquakes to mixed URM-RC buildings
- T2: Numerical analysis of representative URM-RC structural strengthening solutions for buildings

Thesis timeline and objectives

T1: State of the art

Comprehensive catalogue of existing Unreinforced Masonry-Reinforced Concrete mixed building typologies (URM-RC) resulting from past retrofitting or strengthening actions;

T2: Numerical analysis of representative URM-RC structural strengthening solutions for buildings

T3: Development of an innovative vulnerability assessment approach suitable for URM-RC structural typologies

T4: Development of vulnerability and fragility curves for the URM- RC building typology

Task 1 State of the art

Highlights:

- State-of-the-art of mixed URM-RC building typologies: regulations, numerical modelling and analysis methods, existing investigations;
- Damages associated with mixed URM-RC buildings;
- Comprehensive understanding and categorization of the existing mixed URM-RC building typologies;
- Existing challenges and research gaps.

Principal stages of the evolution of the RC role in buildings (RC elements shaded in grey)

	Old URM buildings		Mixed URM-F		RC frame buildings	
Designation	(no RC)		Original URM-RC buildings	Derived URM-RC buildings (intervened URM buildings)		with confined URM infill walls
Scheme		Advent of RC			New RC building codes	
Period*	<1930		1930-1960	1940-present		1960-present
Vertical loadbearing elements	Stone or old brick URM walls (and/or wood elements)		Stone or old brick URM walls (sometimes w/ RC frames/walls)	Stone or old brick URM walls (and/or new RCframes/walls)		RCframes
Roor structure	Wood		Wood and/or RC slabs	Wood (and/or new RC slabs)		RC slabs
Roof structure	Wood		Wood	Wood (and/or new RCstructure)		RCjoists (sometimes wood)

*Period relevant for the Portuguese building stock.

Intervention types for derived URM-RC buildings

Structural typologies of derived URM-RC buildings (RC elements shaded in grey)

Gonçalo Correia Lopes / Mitigating earthquake vulnerability of mixed URM-RC buildings at the urban scale

Gonçalo Correia Lopes / Mitigating earthquake vulnerability of mixed URM-RC buildings at the urban scale

A: Addition

Damages from past earthquakes to mixed URM-RC buildings

		Description			1	
Observed damages	Scheme	Interventions	observed damages	Probable mechanisms	Probable structural causes	
		Substitution of roof structure.	Local collapse in the top of the walls of the tympanum.	Out-of-plane overturning due to the hammering of the RCridge beam.	Roof not effectively connected to the masonry; High inertial forces due to the increased weight of RC	
		Substitution of roof structure; Insertion of ring beam at roof level.	Total collapse of the end-part of a building.	1 st : overturning and out-of-plane collapse of lateral supporting walls at one or more floors due to the	High out-of-plane inertial forces due to the increased weight of Horizontal pushing force comin from the heavy roof; Lack of or poor vertical and	
		Substitution of roof structure; Insertion of ring beam at roof level.	Collapse of upper floor of a building.	eccentricity of the vertical load from the roof; 2 nd : collapse of the roof structure above.	horizontal connections to restrain the movement; Poor quality of loadbearing masonry walls.	
		Substitution of roof structure; Substitution of floor slabs; Insertion of ring beams.	Total collapse building.	1 st : horizontal displacement of floor slabs; 2 nd : overturning and out-of-plane collapse of the walls bellow.	Higher values of inertia forces caused by the rigid floors; Insufficient resistance capacity of deformation of the walls for the actions perpendicular to their plane; Poor vertical connections;	
		Substitution of floor slab; Insertion of ring beam at intermediate floor.	Partial overturn of a large section of a façade.	1 st : horizontal displacement of the floor slab; 2 nd : out-of-plane collapse of the walls above and below.	Higher values of inertia forces caused by the rigid floor; Lengthy wall with poor or none vertical connections to restrain the movement; Heavy RCfloor slab supported only on the inner layer of poor quality double leaf masonry wall.	
		Insertion of ring beam at roof level.	Partial collapse of a large section of a façade.	Out-of-plane collapse of the masonry walls bellow a ring beam.	Poor connection between the RC ring beam and the underlying masonry.	
		Addition of reinforced renders and/or jacketing.	Detachment and deterioration of the renders.	Collapse of the render layer due to chemical and mechanical incompatibilities.	Incorrect design and execution of consolidation techniques; Lack of validation by proper studies; Poor connection or insufficient steel net/rebar; Low durability and corrosion.	

Damages from past earthquakes to mixed URM-RC buildings

The observed partial and total collapses of mixed URM-RC buildings are generally due to:

- 1. Increased horizontal seismically induced inertial forces, owing to the greater weight of RC elements, resulting in larger horizontal displacements (most severe at upper floors) and higher shear forces and bending moments (most severe at lower floors);
- 2. Destabilizing out-of-plane moments, owing to the increased vertical load at the top of the walls combined with eccentricities and horizontal displacements (p-delta effect);
- 3. Incompatibility between existing and new technologies: incompatible deformations of RC elements (more ductile) with the existing URM walls (more brittle), owing to the different stiffness-to-weight ratios (EI/m);
- 4. Poor understanding of the seismic response of the structure owing to questionable technical choices, inaccurate design and incorrect execution of the retrofitting interventions themselves;
- 5. Lack of accurate analysis of the static/dynamic behaviour of the building before and after the interventions;
- 6. Insufficient in-plane stiffness of the floors and inadequate structural connections between perpendicular walls (vertical connections) and between walls and floors, ring-beams and roof structure (horizontal connections).

Task 2

Numerical analysis of representative URM-RC structural strengthening solutions for buildings

Goal:

- Study of which type of interventions and structural systems are more likely to cause/prevent damage and collapse mechanisms, thus increasing/decreasing the vulnerability of such structures
 - First part (ongoing): pushover analyses using nonlinear macro-element models implemented in the equivalent-frame software 3DMacro;
 - Second part (future): analysis of shell-element models using the simplified micro-modelling approach using the software DIANA/ANSYS.

Numerical analysis of representative derived URM-RC buildings

Case study: original URM building

Challenges

Among the many open issues which need to be addressed are:

- 1. Lack or inadequacy of experimental data;
- 2. Difficulties of numerical modelling;
- 3. Scarcity or technical difficulties of numerical analyses;
- 4. Insufficient standards and code indications;
- 5. Lack of an accurate seismic vulnerability assessment methodologies;
- 6. Influence of strengthening/retrofitting interventions;
- 7. Lack of practical inspection, diagnosis and appraisal tools.