Dynamic Structural Health Monitoring of a Overhead Power Line using Interferometric Radar

Author: Fábio Paiva (IST)

Supervisors: Prof. Luís Guerreiro (IST) and Prof. Carneiro Barros (FEUP)

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-July 18

Outline

- RADAR equipment and the main techniques;
- Overhead Line System Case study description;
 - Overhead Power Line Layout;
 - System under study by RADAR (Power Line and Lattice Tower);
- Comparison Experimental results vs Numerical modelling (Modal analysis)
 - An Overhead Power Line monitored by RADAR;
 - Transmission Line System = Overhead Power line + Lattice tower (monitored by RADAR)
- Conclusions and future developments

IBIS-FS RADAR

Pulse Radar working principle

The range resolution can be expressed either in term of **pulse duration** or **pulse bandwidth**:

Brief description of the IBIS-FS RADAR Equipment

IBIS-FS (Image by Interferometric survey) Microwave interferometry based system It can **measure remotely** the displacement of several points along the structure in Line of Sight (LOS)

IBIS – FS System Specifications					
isplacement accuracy	0.01 mm ± 0.1 (depending on range)				
laximum range	Up to 1000 m				
patial Resolution in LOS	0.75 m				
cquisition Frequency	Up to 200 HZ				
requency Band (ku)	17.1-17.3 GHZ (B=200 MHz) Pulse duration =5 * 10 ⁻⁹ s				

Remote static and dynamic monitoring of structures.

- **Remote sensing** on the area of investigation, by identifying "virtual" displacement sensors accordingly with the **spatial resolution** (several points simultaneously);
- **Fast installation** (10~15 minutes);
- Allows monitoring of damaged structures with direct real time measurement of displacements;
- Always operative (day/night in all weather conditions)
- Autonomy of 8 hours with batteries (or indefinitely if a power source exists)

IBIS system uses interferometry to measure the structure displacements that are **illuminated by the electromagnetic beam emitted by the antennas**.

It is important to outline that the IBIS-FS system **can measure displacements only in the system** <u>viewing direction</u> (radial direction or Line of sight)

IBIS-FS is based on the following two RADAR techniques:

- Interferometry;
- Frequency modulated-continuous wave (FM-CW)

Interferometry is a radar technique that consents object displacement measurement by comparing the **phase information** of the electromagnetic waves reflected by the object in **different moments in time**.

Displacement measurement (d) of the object under investigation:

$$d = -\frac{\lambda}{4\pi} \cdot \Delta \varphi$$

 λ – electromagnetic wave velocity

IBIS-FS is based on the following radar techniques:

- Interferometry;
- Frequency modulated-continuous wave (FM-CW)

This technique allows the IBIS-FS system to obtain a one-dimensional image of the scenario of interest with high distance resolution (range resolution) thanks to the transmission of a series of long duration electromagnetic waves (Continuous Wave) at increasing frequencies (Frequency Modulate) Max Spatial resolution=0,75 m

IBIS-FS RADAR PROS/CONS

PROS/CONS of IBIS-FS with other traditional monitoring system (e.g. GPS, accelerometers):

PROS	CONS
Remote sensing instrument (ideal for structures with difficult access to the site or when investigations must be performed quickly)	High dependence on atmospheric effects;
Simultaneous monitoring of all targets within the beam (within the beam antenna) with an acquisition frequency up to 200 HZ	Relative displacements in line of sight (LOS) only;
Fast installation, high accuracy (0,01 mm) and spatial resolution (0,75 m)	Difficult point localization (geo-referencing of target points); it can be reduced by installing artificial reflectors but removes one its main advantages (remote sensing)
Directly measure the displacements in real time (suitable from damaged structures or in risk of collapse)	Cost of equipment
Functioning conditions suitable for long term monitoring (as long there exists a power source);	Scenario around the monitored structure can influence its results (vegetation, other structures closed by)
Independence of daylight and weather;	Necessity of suitable installation point for the IBIS- FS in terms of scenario visibility and stability of the surface the equipment will sit on.

Case Study Presentation – Line Layout

Overhead High Voltage Line - Sub-transmission <u>60 kV Line</u> from EDP, DISTRIBUIÇÃO located in the North of Portugal

Case Study Presentation – 3D View

Overhead High Voltage Line - Sub-transmission <u>60 kV Line</u> from EDP, DISTRIBUIÇÃO located in the North of Portugal

Overhead High Voltage Line – RADAR Monitored Span 12-13

RADAR - **Transverse** direction to the Line

Survey Parameters	RADAR
Vertical tilt (°)	70
Survey duration (minutes)	18,5
Distance (to tower 12)	14,82 m

Overhead High Voltage Line – RADAR Monitored Span 12-13 TRANVERSE

Overhead High Voltage Line – Theoretical/Numerical results Vs Experimental **Cable 1- Conductor** $f_{i,o-p} = \frac{i}{2L} \sqrt{\frac{H_0}{m_c}} \qquad f_{i,i-a} = \frac{i}{L} \sqrt{\frac{H_0}{m_c}} \qquad f_{i,i-s} = \frac{\lambda_i}{L} \sqrt{\frac{H_0}{m_c}}$ λi - Solution of transcendental equation in terms of stiffness d A=3,25 cm² m=1,226 kg/m From Irvine and Caughey, 1974 <u>H₀=11132 N (10% F_{max})</u> E=79,5 GPa L=305.389 m Numerical model d=12,77 m (4,18%*L) (fixed cable element) Error **Out-plane Exp. RADAR** Theoret. | Numerical Mode (%) (Hz) Ν Т 1 0.16 0.15 -2,49 -3.75 0.31 0.31 2,00 4.01 0,44 0.43 3.99 2,62 2 0.31 0.31 4.01 3.00 0.62 0.61 0.65 0.71 -1.13 0.72 0.71 2.40 3 0.47 -2.49 -3.75 0.46 0.94 0.91 -0.42 -2,87 0.85 3.54 1.46 0.83 4 0,62 0.65 -0,97 1.25 0.65 -3,15 0.61 1.20 5 0.78 0.77 0.01 -1.92 6 0.94 0.91 -0.42 -2,87 7 -0,72 -3,73 1.09 1.06 8 1.25 0.65 -3.06 1,20

RADAR Results vs Numerical Modelling (Preliminary results)

Overhead High Voltage Line – RADAR Survey – **Tower 12**

RADAR – Direction 1 (Transverse)					
Survey Parameters	Survey 1	Survey 3			
Radar Vertical tilt (°)	52,5	65,0			
Survey duration (minutes)	22,4	37,5			
Distance (to tower 12 base)	18,90 (50%H)	10,15 (26%H)			
Radar height to the ground (m)	1,00	1,05			

RADAR – Direction 2 (Longitudinal)					
Survey Parameters	Survey 5	Survey 6			
Radar Vertical tilt (°)	70	60			
Survey duration (minutes)	26,4	22,0			
Distance (to tower 12 base)	5,60 (14%H)	14,82 (38%H)			
Radar height to the ground (m)	1,20	1,10			

Diversities 0 /Lease with all all

Range resolution = 0,75 m
Sampling frequency = 100 Hz

RADAR Results vs Numerical Modelling (Preliminary results)

Overhead High Voltage Line – Parametric case studies

Eccentricities (in-plane and out-plane) considered in all models (through member offsets)

Overhead High Voltage Line – Parametric study - Case A

Overhead High Voltage Line – Parametric study - Case A

Case A – "Tower"

Medal	f ₁ (Hz)		f ₂ (Hz)	f ₃ (Hz)		
Model	Т	T L T		L T		L	
A1 (rigid)	3,23	3,23	7,35	7,36	13,28	13,34	
	m _T =46%	m _⊤ =3%	m _⊤ =31%	m _T =0%	m _T =8%	m _τ =0%	
	m _L =3%	m _L =46%	m _L =0%	m _L =31%	m _L =0%	m _L =6%	
A2 (pinned)	3,13	3,13	4,80	4,80	9,54	9,51	
	m _⊤ =44%	m _⊤ =17%	m _T =4,8%	m _T =2,5%	m _T =3%	m _⊤ =2,3%	
	m _L =17%	m _L =44%	m _L =2,4%	m _L =4,2%	m _L =2,5%	m _L =3,0%	
A3 (semi-rigid)	3,03	3,03	6,39	6,41	11,63	11,68	
	m _⊤ =44%	m _τ =1,2%	m _⊤ =26%	m _T =0%	m _⊤ =3%	m _τ =0%	
	m _L =1,2%	m _L =44%	m _L =0%	m _L =26%	m _L =0%	m _L =3,2%	

m_T and m_L represent Modal participating mass ratios in the transverse and longitudinal direction

Mode Shapes for model A1

Other effects considered:

- Eccentricities (inplane/out-plane);
- Section rotation
- Joint Masses (represent around 19% of total weight);

Overhead High Voltage Line – Parametric study - Case B

Case B - "Tower + 2 adjacent spans"

Medel		f ₁ (Hz)		f ₂ (Hz)		f ₃ (Hz)		Other effects considered:
	wodei	Т	L	Т	L	Т	L	 Eccentricities (in- plane/out-plane);
	B1.1 (R-F)	3,39	3,88	7,19	6,53	12,94	12,95	Section rotation
	B1.2 (R-E)	2,59 (error=7%)	1,99 (error=12%)	7,35 (error=8%)	6,38 (error=8%)	12,95	12,95	 Joint Masses (represent around 19% of total weight);
	B2.1 (S-F)	3,24	3,74	6,31	5,95	11,55	11,39	 P-Δ effect
	B2.2 (S-E)	2,45 (error=1%)	1,89 (error=17%)	6,49 (error=4%)	5,95 (error=1%)	11,69	10,15	
M	ode Shapes for odel B1.1							

Overhead High Voltage Line – Parametric study - Case C

Case C – "3 Towers + 4 spans"

Conclusion and Future Developments

Main Conclusions

IBIS- FS RADAR proved to be an efficient and reliable monitoring equipment for the dynamic characterization of the Overhead Power Line case study

- Fast measurement of the displacements on power lines by remote sensing (detection of frequencies, which can be indirectly used for the line sag control)
- Excellent agreement with theoretical expressions for determining fundamental frequencies.

In general the Model <u>C1.2</u> (Rigid joints / Remote span with elastic springs) provided the best accuracy (errors of 3-9%) when comparing only the fundamental frequencies. Parameters like the size of the model (n° of Towers/spans), remote span boundary conditions and joint slippage effects have demonstrated a strong impact on the dynamic behavior of the tower system under study.

Future Developments

Further investigation of the dynamic behavior with accelerometers and impact hammers (validation purposes and for the simultaneous comparison with both sensing approaches)

Estimation of the **system modal parameter** (frequency, modal shape and damping) by different **Operational Modal Analysis (OMA) techniques**

Experimental characterization of typical **joint slippage behavior in lattice towers through laboratory testing**

Dynamic Structural Health Monitoring of a Overhead Power Line using Interferometric Radar

Thank you!