Risk analysis of bridges using a new reliability-based robustness assessment methodology

Hugo Guimarães

Motivation

The goal is to achieve a performance indicator to be considered in the new generation of risk-based bridge management systems

Framework for Reliability Analysis

Framework for Reliability Analysis

Framework for Reliability Analysis

Guimarães, H., Matos, J. C., & Henriques, A. A. (2018). An innovative adaptive sparse response surface method for structural reliability analysis. Structural Safety, 73, 12-28.

Robustness assessment methodology

<u>Reliability analysis</u> of notional removal of elements

<u>Reliability analysis</u> of long-term performance considering effects of corrosion

Structural Performance	Performance under extreme sudden events	Performance under service conditions
Transportation Network	Risk indicator	Criticality level

Normalized risk indicator based on <u>utility functions</u>

Criticality level based on risk ranking using <u>utility indifference curves</u>

Performance assessment based on target reliability

Extreme Sudden Event

Service conditions

Effect of local failure

Effect of corrosion

Modeling:

Notional removal of failed elements

- Girder (due to impact)
- Pier (due to hydraulic causes)

Modeling:

- Reduction of cross-section
- Bond strength deterioration
- Ductility reduction

Performance assessment based on target reliability

Risk indicator based on utility functions

Normalized risk indicator which considers <u>consequences</u> of disruption

Criticality

Utility indifference curves for risk-averse attitude

Case Study – Tercenas Bridge

Case Study – Tercenas Bridge

Bridge condition

- Detailed visual inspection pointed out severe deterioration due to reinforcement corrosion
- An average value of 50% of area loss was estimated at girder 1.
- Bridge was demolished and replaced in 2012 due to doubts about its safety.

FE model

- 3D nonlinear grillage model using TNO DIANA
- Cross-section discretized in several fibers

Deterministic Analysis

Intact structure

Traffic Loads based on LM1 – CEN 2001

Reliability Analysis

G(X) = LF(X) - LL

Scenario	β	
Intact	5.5	
Girders equally correded	4.02	
Failure of Girder 1	3.65	
Failure of Girder 4	3.17	

The structure presents a satisfactory reserve capacity.

The slab reinforcement allows to redistribute loads in the transverse direction.

Performance under extreme sudden event meets the target requirements!

Consequences Analysis

Location: Praia da Vieira, Leiria (Portugal) Road Type: Local road (municipal road)

Direct Costs for Road Administrator Indirect Costs for Society

	Parameter	Mean value Unit	Reference
Rebuilding costs	Rebuilding cost parameter, c _{reb}	1545€ /m²	Almeida (2013)
	Bridge's width, W	8.9 m	(data)
	Bridge's length, L	60 m	(data)
Detour costs	Running cost for car due to detour, c _{Run.car}	0.20€/km	Santos et al. (2011)
	Running cost for truck due to detour, c _{Run,truck}	0.75€/km	Santos et al. (2011)
	Time loss cost for car due to detour, $c_{TL,car}$	7.46€/h	Santos et al. (2011)
	Time loss cost for truck due to detour, $c_{TL,truck}$	11.27€/h	Santos et al. (2011)
Detour	Duration of detour, D _d	540 days	(data)
	Average daily traffic, ADT	100 vehicles	Almeida (2013), IMTT (2016)
	Percentage of truck traffic (% of truck ADT), TT _p	1 %	Almeida (2013)
	Average detour speed for cars, S _{d,car}	50 km/h	IMTT (2016)
	Average detour speed for trucks, S _{d,ctruck}	40 km/h	IMTT (2016)
	Detour Length, D	8.50 km	Google Maps

Consequences Analysis

	Rebuilding Costs	825,030 €	
		Car	90,882 €
	Running Costs	Truck	3,443 €
		Total	94,325 €
		Car	67,798€
	Time Loss Costs	Truck	1,293 €
		Total	69,091€
	Time Loss (h)	Car	9088
		Truck	115
		Total	9203
	Direct Costs	Total	825,030 €
	Indirect Costs	Total	163,416€
R_{dir}			
$I_{rob} = \frac{an}{R_{dir} + R_{ind}}$ Risk-based Indicator			0.83
	Direct Costs	Utility	0.26
Risk taking attitude	Indirect Costs	Utility	0.81
	Proposed Risk Indicator		0.49
Diele er en e ettitude	Direct Costs	Utility	0.73
RISK averse attitude	Indirect Costs	Utility	0.97
	Proposed Risk Indicator		0.86
Diak poutral attitude	Direct Costs	Utility	0.62
	Indirect Costs	Utility	0.94
	Proposed Risk Indicator		0.79

Maximum admissible direct losses: % annual budget for maintenance

Maximum admissible indirect losses: % GDP of affected region

Criticality

Robustness Assessment

		Risk Averse	Risk Neutral	Risk Taking
	Weight	PI	PI	PI
Sudden Event	0.3	1.00	1.00	1.00
Serviciability	0.2	0.00	0.00	0.00
Risk	0.3	0.86	0.79	0.49
Criticality	0.2	0.80	0.80	0.80
Robustness Indicator		0.72	0.70	0.61

Conclusions

- This covered the two main tasks of the research:
 - Response Surface methodology for reliability analysis
 - Robustness assessment methodology
- Case Studies
 - Short span RC bridge (underpass)
 - Tercenas Bridge
 - Highay overpass PS8 (three-span with precast I-girders)