STABILITY ANALYSIS OF A SHAKE TABLE HYBRID SIMULATION FOR LINEAR AND NON-LINEAR SDOF SYSTEMS

Gidewon Goitom Tekeste

Laboratório Nacional de Engenharia Civil (LNEC) and University of Aveiro (UA)

OUTLINE

- □ Virtual hybrid simulation (VHS)
- Mechanical and complete system identification of LNEC's uniaxial shake table (ST1D)
- □ ST1D under payload and uncertainty of its parameters
- □ Stability analysis of a VHS using Routh-Hurwitz stability test
- □ Stability test on linear and non-linear SDOFs
- □ VHS using OpenSees & OpenFresco (OSOF-VHS)
- □ Modelling experimental errors in OSOF-VHS
- □ Future directions

Virtual Hybrid Simulation (VHS)

- Virtual hybrid simulation as a pre-hybrid testing for:
 - Checking bugs in the testing software
 - Selecting appropriate controllers
 - Addressing experimental errors and stability test
- ✤ Requirements of VHS:
 - Complete model of the servo-hydraulic actuator or the shake table
 - Model of the experimental element

Uniaxial shake table system identification

<u>**1. Mechanical system identification</u>** Includes identification of:</u>

- \checkmark Total moving mass
 - Experimental sub-structure mass
 - Platen mass
 - Actuator mass
 - Other moving parts

✓ Dissipative force

- Experimental sub-structure damping
- Resistance in actuator chamber
- Resistance in platen bearings

✓ Elastic force

- Experimental sub-structure
- Other sources

2. Complete system identification Includes:

- ✓ Mechanical system identification
- Servo-hydraulic actuator control (SHAC) identification
 Actuator

Mechanical system identification

- Mathematical models assumed for fitting:
 - ✓ $F \downarrow I = Mu \downarrow x$, where M=M↓Platen +M↓ac
 - ✓ $F \downarrow E = Ku \downarrow x$
 - ✓ $F \downarrow D = [F \downarrow \mu + C/u \downarrow x / \hat{\alpha}] sign(u \downarrow x)$, where
- The experimental method uses:
 - ✓ Sinusoidal and triangular displacement signals
- Uses periodicity of measured signals:
 - ✓ Triangular test:

✓ Sinusoidal test:

&

Mechanical system identification continued...

Elastic force estimation: estimated from triangular signals

- ↔ A low-pass Fourier filter with a f_c 2-4 times the f_{cmd}
- Uses a synthesized velocity signal (from accelerometer and LVDT measurements)
- Signals used for estimation:

Test	Freq [Hz]	Amplitude [cm]	V _{max} [cm/s]
T5	0.4	1.0	1.6
Т6	0.5	1.0	2

- Null or near zero elastic force
- Spurious estimates due to small SNR of the load cell force

same applies to mass and dissipative force estimation

Mechanical system identification continued...

Effective horizontal mass estimation: estimated from sinusoidal signals

- Excludes velocities below $/\pm 5/mm/s$
- Minimizing velocity sum at t1 and [T/2-t1-Tol, T/2-t1+Tol]

u $lmin(tl1) = min{[u lx(tl1)+u lx(_T/2-tl1])}$

Mechanical system identification continued...

Dissipative force estimation: estimated from triangular signals

- Straightforward coupling of samples (no displacement sum minimization)
- Propagation of disturbance is pronounced after inversion of motion
- Each triangular test yield +ve and –ve estimates of dissipative force
- The coulomb friction force governs the dissipative force

Complete system identification

- Involves modelling:
 - ✓ Servo-controller proportional gain only controller
 - ✓ Servo-valve first order transfer function (good in 0-50Hz range)
 - ✓ Hydraulic actuator linearized flow equation and oil-column frequency
 - ✓ Estimated effective mass of the platen (elastic force was set to zero)
 - ✓ Dissipative force (simplified to viscous damping only)
 - Payload (specimen) dynamic properties no payload condition to produce a generalized system model; Model subject to changes under any experimental specimen

Where:

* $m \downarrow T \uparrow * = m \downarrow p$ under no payload condition, while, under payload $m \downarrow sp$ and $H \downarrow sp$ (s) are non-2^d ero te

Complete system identification continued...

- ✤ Test signal characteristics:
 - ✓ Band Limited White Noise (BLWN) ranging 0-50Hz
 - ✓ RMS value of 0.345 cm
- Parametric identification of the ST1D model in SIMULINK using:
 - ✓ Transfer system equation developed
 - ✓ Command signal, measured signal, and the gain error identified
 - ✓ Constrained non-linear least square solution

ST1D model under payload & uncertainty of its parameters

SDOF payload : Flexible and rigid

- Flexible SDOF comes with Control-structure interaction (CSI)
 - Behaves similarly to a no-payload condition, except it introduces:
 - > A notch and a peak in the magnitude plot
 - > A notch in the phase plot
- Rigid SDOF results in a stiffer response and a significant shift in the oil-column resonance

Uncertainty of ST1D parameters: No payload

- Undershooting mass results in a spongy response
- Overshooting apparently makes system stiffer
- ✤ Increase in K_p: stiffer but smaller margins of stability

Stability analysis of a VHS using Routh-Hurwitz test

Why and how stability test:

- Delay in HS is interpreted as a 'negative damping'
- Stability under a linear transfer system is dictated by:
 - ✓ Experimental stiffness
 - ✓ Experimental mass and
 - ✓ Experimental damping
- Shortcomings of Mercan & Ricles (2007) stability study:
 - ✓ A 'pure delay' assumption in HS
- System delay is a function of frequency, hence it requires the system model
- Stability test using Routh-Hurwitz stability:
 - ✓ Sufficient for stability of LTI control systems
 - ✓ Allows parametric study under a linear response

Routh-Hurwitz method:

- Finds roots of the characteristic polynomial equation (D(s)) that fall in right-half S-plane
- Procedure:
 - ✓ Develop the Hurwitz matrix (upper triangular matrix)
 - ✓ Any sign change in 1st column indicates unstable test

N(s)/D(s)

$$D(s) = b \downarrow m \ s \uparrow m + b \downarrow m - 1 \ s \uparrow m - 1 + b \downarrow m - 1$$

Where: $c_i = b_i m_i + b_i m_i - 2i - b_i m + b_i m_i - 2i - 1 / b_i m_i - 1$ and so on Gidewon G.Tekeste / Stability analysis of a shake table hybrid simulation for linear and non-linear

Stability analysis of a linear SDOF

Analysis and results:

- ♦ A SDOF properties: ω = 1Hz, m = 2t and ζ = 2%
- Generating stability surface by constantly changing the fractions of experimental and numerical sub-structures, e.g., M_{exp} = M_{exp}/m
- ✤ A percentage step of 5% was adopted for each parameter
- ✤ 2-parameter study, namely:

i. K_{exp} versus C_{exp} at: $\Box M_{exp}$ = 0, 20%, 40%, 60%, 80%, 100%

- ii. C_{exp} versus M_{exp} at:
 - $\Box K_{exp} = 0, 20\%, 40\%, 60\%, 80\%, 100\%$

iii. K_{exp} versus M_{exp} at:

 $\Box C_{exp} = 0, 20\%, 40\%, 60\%, 80\%, 100\%$

- 2-parameter study at a fixed third parameter, but at varying values of stiffness and viscous damping of the SDOF (for cases *i* and *ii*)
 - \Box *m*=2*t* (constant), *ω*=1,2,5 Hz, and *ζ*=2%, 5%, 10%

Stability analysis of a linear SDOF

Stability analysis of a linear SDOF continued...

Gidewon G.Tekeste / Stability analysis of a shake table hybrid simulation for linear and non-linear SDOF systems

Stability analysis of a linear SDOF continued...

K_{exp} versus M_{exp} at varying C_{exp} :

- ✓ Regardless of the C_{exp} , stability contour is identical, except at C_{exp} =100%
- ✓ A positive linear relationship exists between M_{exp} and K_{exp} until 30% of M_{exp}
- ✓ Stable at right top corner of contour plot at C_{exp} =100%, i.e., shake table test
- ✓ Small deviations of the stable zone under varying frequencies and damping, but the linear relationship still prevails

Tekeste, G.G., Correia, A.A., Costa, A. G., [2017], "Stability analysis of a real-time shake table hybrid simulation for linear and non-linear SDOF systems", 7th international conference on Advances in Experimental Structural Engineering, EUCENTRE Foundation, Pavia, Italy

Stability analysis of a nonlinear SDOF

Why?

- To address the nonlinear range of response
- Study the relation between degree of nonlinearity and stability

Methodology:

- Simulink model of VHS
 - ✓ Bouc-Wen model of the experimental part
 - ✓ Linear model of numerical part

$f \downarrow exp(t) = \alpha k \downarrow int \uparrow exp x \downarrow sp(t) + (1-\alpha) k \downarrow int \uparrow exp \delta \downarrow y Z(t) + c \uparrow exp x \downarrow sp(t) \\ Z(t) = x \downarrow sp(t) \{A + \beta * sign(Z(t)x \downarrow sp(t)) + \gamma / Z(t) / \uparrow n \} / \delta \downarrow y$

 The Simulink model calls a MATLAB .m function of Bouc-Wen at every step

Comparison:

- ✤ Validation at unstable coordinates of the linear case for comparison (M_{exp}=20%, C_{exp}=20% and K_{exp}=35%)
- ✤ Comments:
 - ✓ Improved stability under a non-linear response an or a material with high non-linear behaviour
 - ✓ A larger margin from instability with increasing degree of non-linearity, defined by

 $\rho = \max |f \downarrow r(t)| / f \downarrow \max = |f \downarrow r(t)| / f \downarrow y [A/(\beta + \gamma)] \uparrow 1/n$

Virtual hybrid simulation using OpenSees and OpenFresco

- Virtual hybrid tests using OS as the computational driver and OF as the middleware
- Restoring forces returned to OS are simulated using OS uniaxial material (restoring forces in actual hybrid tests are measured in laboratory)

Experimental errors modelling in OF:

- Introducing experimental errors through ExpSignalFilter control object using:
 - ErrorSimUndershoot
 - ErrorSimOvershoot
 - ErrorSimRandomGauss (models random process in nature
 ExperimentalSetup
 dt+d(wgn)

Tekeste, G.G., Correia, A.A., Costa, A. G., [2017] "Virtual hybrid simulation tests accounting for experimental errors", OpenSees Days Europe: First European conference on OpenSees, Porto, Portugal

ExperimentalControl

Modelling experimental errors in OSOF-VHS

Offline estimation of error parameters using the ST1D model in Simulink

- # expSignalFilter ErrorSimRandomGauss \$tag \$avg \$std expSignalFilter ErrorSimRandomGauss 1 -0.0003475 0.2051730
- One-bay frame with a truss element and two non-linear columns
- Columns are "experimental" substructures
- Truss element and masses are the "numerical" substructures

Modelling experimental errors in OSOF-VHS continued...

OpenFresco definition:
 expControl SimUniaxialMaterials 1 - ctrlFilters 10 0 0 0
 expSetup OneActuator 1 - control 1 2 - sizeTrialOut 3 3 (only 1 ctrl and 1 out were used)
 expSite LocalSite 1 1
 expElement beamColumn 1 1 3 1 - site 1 - initStif . . .

- Since "real" experimental errors cannot be directly feedback to OS, a number of stochastic realizations were necessary to model the errors using WGN
- Expected response is found by averaging over 50 realizations
- The sub-space synchronization plot (SSP) shows both gain and time-lag errors

Trial displacements without error vs with WGN (averaged)

Modelling experimental errors in OSOF-VHS continued...

- Conclusions:
 - Experimental errors result in a coupled gain and delay (introduced by ST1D dynamics)
 - Reduction in energy dissipation capacity is prevalent
- Solutions sought:
 - Higher frequency of AD/DA conversion
 - Tuning the controller gains for minimal settling time and overshoot
 - Implementation of adaptive model based compensator in the outer loop

Feedforward compensation of ST1D

Future directions

- Completion of a LabVIEW based testing software that works in conjunction with OF and OS
- Conducting hybrid simulations on a steel frame using the ST1D only
- Development of advanced control strategies for the RTHS framework
 - ✓ Shake table control
 - ✓ Force control of actuators
 - ✓ Model based and adaptive compensation

THANK YOU FOR YOUR ATTENTION! Gidewon G.Tekeste (gtekeste@lnec.pt)