PD + F

If TÉCNICO

U. PORTO

ZNE<

PROBABILISTIC SEISMIC VULNERABILITY ASSESSMENT OF "GAIOLEIRO" BUILDINGS

Author: Ana Simões Advisors: Rita Bento (IST, Universidade de Lisboa, Portugal) Sergio Lagomarsino (University of Genoa, Italy) Paulo Lourenço (University of Minho, Portugal)

universidade

de aveiro

Motivation

• Masonry buildings were built for many centuries based on the available materials and empirical provisions.

• "Gaioleiro" buildings (19-20th centuries) is the typology with the <u>highest</u> structural weaknesses of the building stock of Lisbon.

Objectives of the PhD research work

- Evaluation of the seismic vulnerability of "Gaioleiro" buildings;
- Analyses of global and local behaviour;
- Definition of fragility curves.

Outline

- The "gaioleiro" buildings
- Epistemic uncertainties
- Aleatory uncertainties
- Non-linear static analyses
- Definition of limit states
- Seismic performance-based assessment
- Derivation of numerical fragility curves
- Final comments

The "gaioleiro" buildings

- Buildings with 4 to 7 storeys high
- External walls: rubble limestone masonry and air lime mortar
- Internal walls: solid or hollow brick masonry and air lime mortar
- Floors: timber beams placed perpendicular to the main façade walls

Type I

Type II

Type III

Type IV

Simões, A. G.; Appleton, J. G.; Bento, R.; Caldas, J. V.; Lourenço, P. B.; Lagomarsino, S. (2016). Architectural and structural characteristics of masonry buildings on the transition between the 19th and 20th centuries in Lisbon, Portugal. Int J Archit Herit 11(4), pp. 457-474.

Ana Simões / Probabilistic seismic vulnerability assessment of "gaioleiro" buildings.

The "gaioleiro" buildings

- Building type I: asymmetric structure.
- Model with 3 buildings to analyse different boundary conditions.
- Numerical model defined in Tremuri Program according to the equivalent frame model approach.

Epistemic uncertainties

32 models

- Ground floor configuration: housing vs. shopping
- Constructive details: shared vs. independent side walls
- Side wall materials: solid brick vs. hollow brick masonry
- Main internal walls: solid brick vs. hollow brick vs. timber
- Partition walls: hollow brick vs. timber ("tabique")

Ana Simões / Probabilistic seismic vulnerability assessment of "gaioleiro" buildings.

Aleatory uncertainties

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).
- Modelling of spandrels with brick arch on the façade walls.
- Timber ("tabique") wall properties from experimental results.
- Stiffness of timber floors (G) NZSEE code.
- Connections between walls (A and I of link beams).

Туре	Group	RV	Units	Median	Dispersion β
Rubble stone masonry	1	Е	MPa	491.0	0.180
		G	MPa	163.7	0.180
		f _c	MPa	0.95	0.120
	2	τo	MPa	0.022	0.184
Solid brick masonry	3	Ε	MPa	560.4	0.160
		G	MPa	186.8	0.160
		f _c	MPa	1.07	0.113
	4	τo	MPa	0.074	0.214
	5	μ_{loc}	-	0.529	0.280
Hollow brick masonry	6	Ε	MPa	560.4	0.160
		G	MPa	186.8	0.160
		fc	MPa	0.87	0.135
	7	τo	MPa	0.074	0.214
	8	μ_{loc}	-	0.529	0.280

17 groups and 50 random variables Lognormal and Beta distributions

1000 Monte Carlo simulations

Non-linear static analyses

Non-linear static analyses

Non-linear static analyses

- Small variations between negative and positive directions.
- Higher initial stiffness and $V_{b,max}$ in the Y direction.
- Higher ultimate displacement in the X direction.

Ana Simões / Probabilistic seismic vulnerability assessment of "gaioleiro" buildings.

Seismic performance-based assessment

• Definition of Damage Levels (DLs) on the pushover curve based on a multiscale approach [1]:

- Element (E) cumulative damage rate of panels;
- Macroelement (M) cumulative damage rate of panels in each wall and each level;
- \circ Global (G) percentage of the total base shear.

 $u_{DLk} = \min(u_{E,DLk}; u_{M,DLk}; u_{G,DLk}) \quad k = 1, ..., 4$

[1] Lagomarsino S., Cattari S. (2015) PERPETUATE guidelines for seismic performancebased assessment of cultural heritage masonry structures. Bull Earth Eng 13(1):13-47.

Seismic performance-based assessment

• Definition of Damage Levels (DLs) on the pushover curve based on a multiscale approach [1]:

[1] Lagomarsino S., Cattari S. (2015) PERPETUATE guidelines for seismic performancebased assessment of cultural heritage masonry structures. Bull Earth Eng 13(1):13-47.

Seismic performance-based assessment

- Conversion of the pushover curve in an equivalent SDOF.
- Definition of the seismic demand based on the use of an overdamped spectra by adopting the Capacity Spectrum Method.
- Computation of the Intensity Measure (IM = PGA) compatible with the attainment of each DL.

Derivation of numerical fragility curves

• Probability that a generic Damage Level (DL) is reached for a given IM.

Derivation of numerical fragility curves

• Small variations of PGA between negative and positive directions (<9%). The minimum value is considered.

- Higher PGA for DL3 and DL4 with triangular load pattern.
- Higher PGA for DL3 and DL4 in the X direction.
- Seismic action type 1 is the most demanding seismic scenario.

Derivation of numerical fragility curves

• Uncertainty associated to the definition of the capacity curve (β_c).

• Uncertainty associated to the spectral shape of the seismic action (β_D).

$$\beta_T = \sqrt{\beta_C^2 + \beta_D^2}$$

Final comments

- Detailed assessment of the seismic vulnerability of URM buildings.
- Treatment of epistemic and aleatory uncertainties.
- Seismic performance-based assessment.
- Definition of numerical fragility curves.

Future work

- Derivation of the fragility curves for the 8 base models.
- Comparison with other fragility curves.
- Analysis of the local behaviour: out-of-plane mechanisms.

Thank you!