Mitigation Framework for Seismic Prone Zone

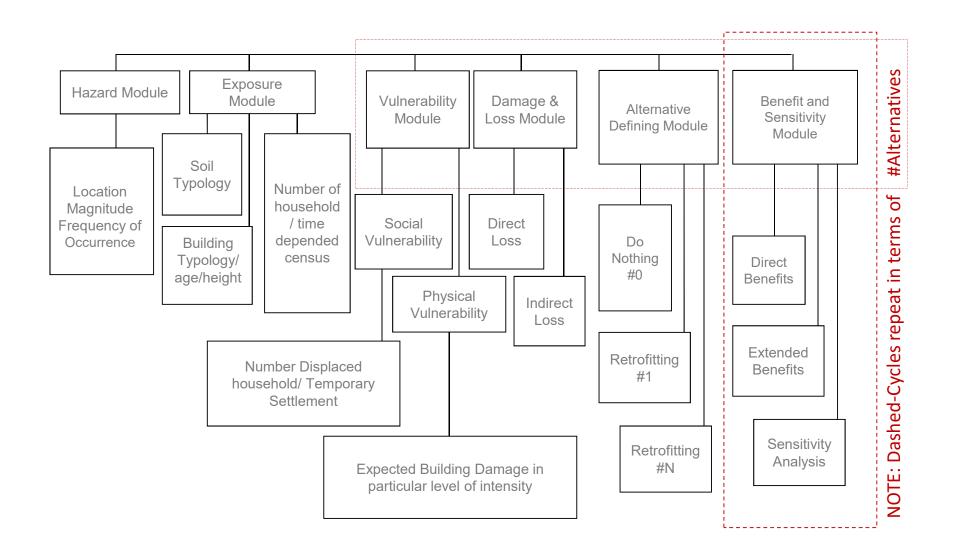
Considering a Cost Effectiveness Analysis

Sanam Moghimi

Sustainable Seismic Risk and Mitigation Strategies; Cost Effectiveness Analysis

Objective

- Applicable Mitigation Framework for Decision Making in Seismic Risk
- Development of Cost Benefit Analysis Model
- Evaluation of the Most Effective Mitigation Strategies
- Definition of strengthening Policies for Urban Areas in Metropolitan (Tehran)
- One Step forward to Conquer Risk Reduction Conflict



Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Work Pl	an Scheduling	<u>s </u>				ata ecting	g 🕇				arch ques				Outp Analy		>
	Time	First Yea			ar	Second Yea			ar	т	hird	nird Year			Forth Year		
	Task	Q1	Q2	Q3	Q4	Q1	02	0 3	Q4	Q1	02	03	Q4	Q1	Q2	Q 3	Q4
	Essential Courses																
	Literature Review																
	Data collecting for Case Study						٠										
	Research Methodology Plan																
	Selection of appropriate research techniques								٠								
	Development of the Methodology chosen																
	Statistical Analysis																
	Testing the Accuracy																
	Defining the Scenario of Earthquake																
Actual Task Actual Task As Planned Critical Task	Programming & Development																
	Application of Developed methods for case study																
	Output Analysis																
	Finding and Recommendation																
Actual J As Plan Critical Task	Write up																

Sanam Moghimi/ Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Applicable Mitigation Framework; Cost Effectiveness Analysis

Hazard Module	Y				
Exposure Module	Defines the frequency and severity of				
Vulnerability Module	a hazard, at a specific location Analyzing historical event frequencies				
Loss & Damage Module	Reviewing scientific studies				
Retrofitting Alternative Module					
Benefit & Sensitivity Module	Results in hazard parameters				
Decision Making Module	Stochastic event sets are generated				

Sanam Moghimi/ Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Hazard Module

Exposure Module

Vulnerability Module

Loss & Damage Module

Retrofitting Alternative Module

Benefit & Sensitivity Module

Decision Making Module

✓ Building Typology
 ✓ Building Height/ Building Age
 ✓ Number of Floors/ Status of Building
 ✓ Population Density/ Different Hours

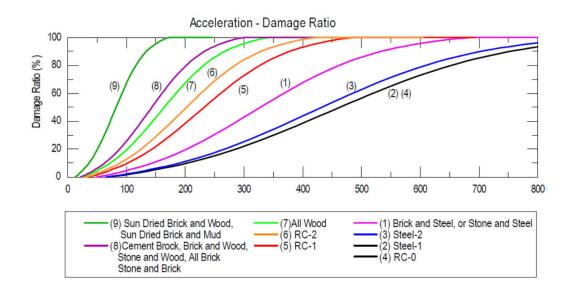
Sanam Moghimi/ Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Hazard Module

Exposure Module

Vulnerability Module

Loss & Damage Module


Retrofitting Alternative Module

Benefit & Sensitivity Module

Decision Making Module

Building vulnerability is the measurement of the damage, building is likely to experience when it is subjected to ground shaking of a specified intensity.

Fragility Curves; Capacity Curves

Hazard Module

Exposure Module

Vulnerability Module

Loss & Damage Module

Retrofitting Alternative Module

Benefit & Sensitivity Module

Decision Making Module

Several measures are introduced to calculate the loss

Damage Ratio
Mean Damage Ratio
Average Annual Loss
Loss Exceedance Curve
Probable Maximum Loss
Discount rate

Sanam Moghimi/ Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Hazard Module

Exposure Module

Vulnerability Module					
	•Do Nothing				
Loss & Damage Module	 Have time/ Have money 				
Ũ	 Have money/ No time 				
Retrofitting Alternative Module -	 Have money/ Technical issue 				
	 Limited money/ Unlimited time 				
Benefit & Sensitivity Module	 Common technical alternative 				
	 Innovative retrofitting alternative 				
Decision Making Module					

Hazard Module

Exposure Module

Vulnerability Module

Loss & Damage Module

Retrofitting Alternative Module

Benefit & Sensitivity Module

Decision Making Module

 Specify the nature of the problem
 Determine the direct and indirect cost of the mitigation alternatives
 Determine the benefits of mitigation alternatives;
 direct benefit indirect benefits
 Calculate attractiveness of mitigation alternatives
 Choose the best mitigation alternative; highest BCR.

Hazard Module

Exposure Module

Vulnerability Module

Loss & Damage Module

Retrofitting Alternative Module

Benefit & Sensitivity Module

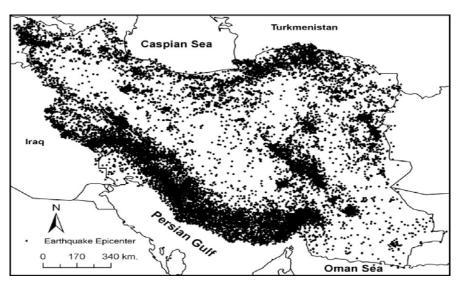
Decision Making Module

Combination of Software-Personal Perception of Decision Makers

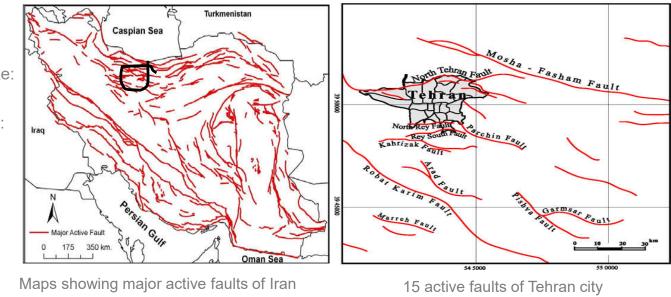
Software/ Logic trees
Multi-criteria decision making
Correlations/Interdependencies
Expert judgment,
Sensitivity/ Priority / Importance
Feasibility/ CBA of alternatives

Case Study : Tehran; IRAN

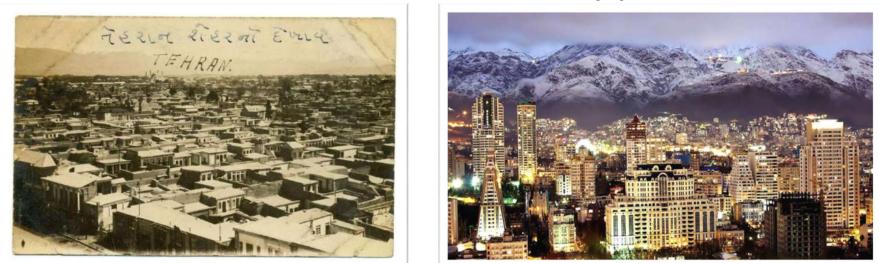
Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis


Country: Iran Capital: Tehran Area of the Capital: 686.3 km² Distance of the Nearest Mountain to City : 10 km Altitude Approaching; 3933 m Number of Residents: 8.154 million (2011) Number of Neighborhood:

22


First Severe Recorded Earthquake: **855** Last Severe Earthquake: **1830** Number of Active Fault: **15** Typology of Building: •Steel 60 %

•Concrete 18%


•Others 20%

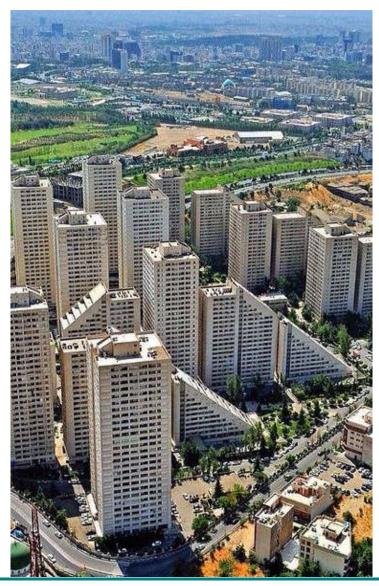
Epicenteral map of instrumentally recorded earthquakes of the Iranian region from 1900 to 2010, extracted from different catalogs (e.g., ISC, USGS, IIEES), with M>4.0

Tehran has experienced rapid urban development and increasing population density in recent decades.

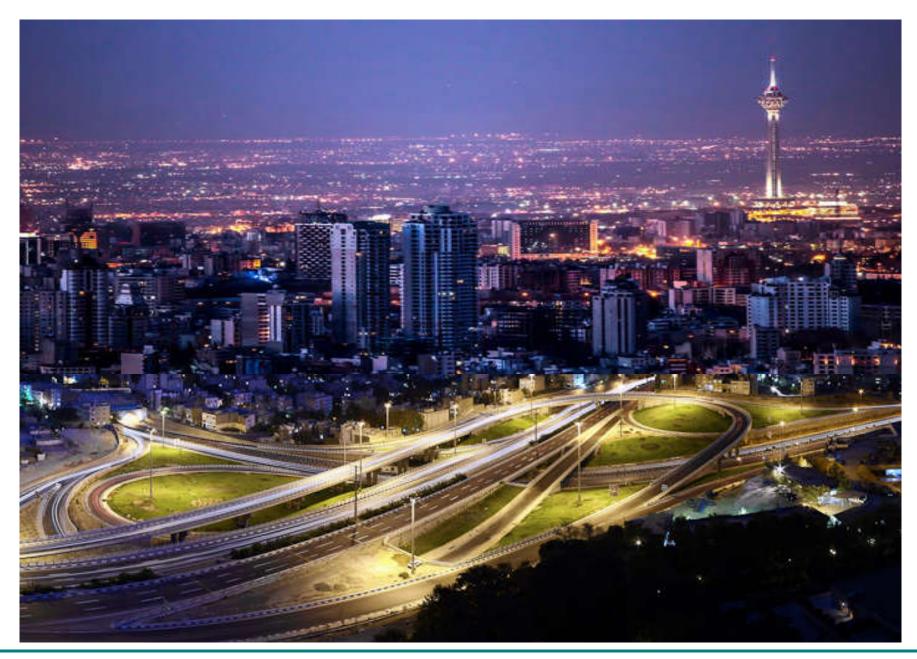
1950

2010

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis


Buildings in Tehran

Tehran International Tower					
Building System	Concrete				
Number of Story	56				
Туре	<u>Residential</u>				
Location	<u>Tehran, Iran</u>				
<u>Coordinates</u>	<u>35.7426808°N</u> <u>51.3991446°ECoordina</u> <u>tes</u> : <u>35.7426808°N</u> <u>51.3991446°E</u>				
Construction started	1996				
Completed	2005				
Opening	2007				
Height	162 m (531 ft)				
Floor area	220,000 m ² (2,400,000 sq ft)				


Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Buildings in Tehran...

Tehran AtiSaz							
Building System	Concrete						
Number of Story (depends on type)	9 - 32						
Туре	Residential Complex						
Location	<u>Tehran</u> , <u>Iran</u>						
<u>Coordinates</u>	35°47'6"N 51°23'25"E						
Construction started	1975						
Completed	1987						
New Phase	2001						
Complex Area	155000 square meters						
Number of Structures in Complex	23						

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Work Done

- Uncertainty / Reliability Courses (IST)
- Innovation / Leadership Courses (UMinho)
- Literature review of seismic risk and mitigation strategies
 - ✓ Applicable Mitigation Framework
- •Data collecting for Case Study (as if Tehran is approved)
 - ✓ Census and statistics of residents in Tehran, 2011
 - \checkmark Typology of buildings and statistics 2006

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Under Progress:

Data Request Correspondence with Following Sectors

- ✓ Tehran Disaster Mitigation and Management Organization (TDMMO)
- ✓ Contacting with International Institute of Earthquake Engineering and Seismology (IIEES)
- ✓ Tehran Urban Research and Planning Center
- ✓ Statistical Center of Iran
- ✓ Tehran Construction Engineering Organization (TCEO)
- ✓ Tehran University Natural Disaster Management Center
- ✓ Iranian Seismological Center

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Next Steps

. . .

Research Methodology Plan
Selection of appropriate research techniques
Development of the Methodology chosen
Statistical Analysis
Testing the Accuracy
Defining the Scenario of Earthquake

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis

Thank You for Your Consideration...

Sanam Moghimi / Mitigation Framework for Seismic Prone Zone Considering a Cost Effectiveness Analysis