COASTAL EROSION RISK ASSESSMENT AT PORTUGUESE SPEAKING COUNTRIES

CERA: An open-source application to assess coastal erosion risk

Pedro Narra Universidade de Aveiro Supervisors: Carlos Coelho (UA) and Francisco Sancho (LNEC)

PD - F

ICIST

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-July 8th

PRESENTATION STRUCTURE

- Introduction;
- Vulnerability assessment;
- Consequence assessment;
- Risk assessment;
- Geographic Information Systems (GIS);
- Study areas;
- Data gathering and processing;
- Results;
- Conclusions;
- Future Developments.

INTRODUCTION

- 2/3 of worldwide population live within coastal zones;
- Anthropic action increases vulnerability of coastal zones;
- Existent methodologies are specific of one location and are difficult to use and have access;
- Objective: create a methodology and respective application that is both easy to use and flexible enough to be applicable in different coastal environments.

Pedro Narra / Coastal Erosion Risk Assessment at Portuguese Speaking Countries

VULNERABILITY ASSESSMENT

VULNERABILITY PARAMETERS OF COELHO (2005)

Parameters	Very low 1	Low 2	Moderated 3	High 4	Very high 5
Distance to shoreline	>1000]200, 1000]]50, 200]]20, 50]	≤ 20
Topography (m)	> 30]20, 30]]10, 20]]5, 10]	≤ 5
Geology	Magmatic rocks	Metamorphic rocks	Sedimentary rocks	Non-consolidated coarse sediments	Non-consolidated fine sediments
Geomorphology	Mountains	Rock cliffs	Erosive cliffs; sheltered beaches	Exposed beaches; plain	Dunes; river mouths; estuaries
Ground cover	Forest	Vegetation cultivated	Non-covered	Rural urbanized	Urbanized; industrial
Anthropogenic actions	Shoreline stabilization intervention	Intervention without sediment sources reduction	Intervention with sediment sources reduction	Without interventions or sediment sources reduction	Without interventions and with sediment sources reduction
Maximum significant wave height (m)	< 3.0	[3.0, 5.0[[5.0, 6.0[[6.0, 6.9[≥ 6.9
Maximum tidal range (m)	< 1.0	[1.0, 2.0[[2.0, 4.0[[4.0, 6.0[≥ 6.0
Average erosion / accretion rates (m/year)	> 0.0 Accretion	[0.0, -1.0[Erosion	[-1.0, -3.0[Erosion	[-3.0, -5.0[Erosion	≤ -5.0 Erosion

CONSEQUENCE AND RISK ASSESSMENT

CONSEQUENCE PARAMETERS OF COELHO (2005)

Parameters	Very low 1	Low 2	Moderated 3	High 4	Very high 5
Population density (inhabitant/km²)	< 125	[125, 250[[250, 500[[500, 1000[≥1000
Economy (employment/km²)	0]0, 120]]120, 240]]240, 480]	> 480
Ecology	No ecological relevance	Agricultural reserve; areas of community interest	Ecological protected area	Coastal protection zone	Natural reserve
Heritage	No heritage to preserve	Scattered houses; roads	Urban centers	Regional historic buildings; critical facilities	National monuments

RISK MATRIX OF COELHO (2005)

		Consequence					
		1	2	3	4	5	
	1	l Very low	1	1	Ш	ш	
lity	2	1	ll Low	Ш	ш	IV	
nerabi	3	1	Ш	III Moderate	IV	V	
Vul	4	Ш	ш	IV	IV High	V	
	5	Ш	IV	V	V	V Very high	

GEOGRAPHIC INFORMATION SYSTEMS (GIS)

L (Coastal Risk Assessment		? ×			
Vulnerability Parameters:						
		100m	5000m			
Distance to Shoreline:	1_distancia_linha_costa	0.214 🖨	0.880 ≑			
Topography:	2_topografia	0.214 🜩	0.033 🜩			
Geology:	3_geologia	0.214 🜩	0.033 ≑			
Geomorphology:	4_geomorfologia	0.071 ≑	0.011 ≑			
Ground Cover:	5_revestimento_solo	0.071 🜩	0.011 ≑			
Anthropogenic Actions:	6_acoes_antropogenicas	0.037 🜲	0.005 ≑			
Maximum Significant Wave Height:	7_maxima_altura_onda_significativa 🔻	0.071 🖨	0.011 ≑			
Maximum Tidal Range:	8_maxima_amplitude_mare	0.037 🜩	0.005 ≑			
Average Erosion/Accretion Rates:	9_erosao_acrecao	0.071 🖨	0.011 ≑			
Consequence Parameters:						
Population Density:	11_populacao 👻	Exe	ecute			
Economic Activity:	12_economia					
Ecology:	13_ecologia	d	ose			
Historical Heritage:	14_patrimonio 🔻					

GRAPHIC USER INTERFACE OF CERA

- GIS application called CERA (Coastal Erosion Risk Assessment);
- Uses Coelho (2005) methodology
- Developed in Python and Qt;
- Plugin for QGIS, a free and opensource software;
- Allows integration with other GIS features.

TESTING STUDY AREAS FOR CERA: AVEIRO, PORTUGAL AND MACANETA, MOZAMBIQUE.

DATA GATHERING AND PROCESSING

MAPS FOR VULNERABILITY PARAMETERS IN AVEIRO, PORTUGAL.

MAPS FOR CONSEQUENCE PARAMETERS IN AVEIRO, PORTUGAL

MAPS FOR VULNERABILITY PARAMETERS IN MACANETA, MOZAMBIQUE

MAPS FOR CONSEQUENCE PARAMETERS IN MACANETA, MOZAMBIQUE

RESULTS

FINAL OUTPUTS FOR AVEIRO, PORTUGAL

- Stripe of 2 km parallel to the shoreline was classified;
- High vulnerability along the coastline (class IV);
- Consequence level varies across all classes;
- Parishes at north present higher level on consequences;
- Risk is higher at north and at Aveiro port.

RESULTS

- Classifications in Macaneta are less varied;
- Vulnerability class is similar to Aveiro, due to its similarities in terms of coastal environment;
- Consequences are mostly absent from this area;
- Risk is lower than in Aveiro.

FINAL OUTPUTS FOR MACANETA, MOZAMBIQUE

CONCLUSIONS

- Objective: create a methodology and respective application that is both easy to use and flexible enough to be applicable in different coastal environments;
- GIS application was developed, integrating Coelho methodology to assess vulnerability, consequences and risk to coastal erosion;
- Aveiro and Macaneta were used as test areas to the application.

Pedro Narra / Coastal Erosion Risk Assessment at Portuguese Speaking Countries

FUTURE DEVELOPMENTS

- Assessment of new study area: Mexico;
- Locate an additional study area, with different characteristics from the current study sites;
- Sensitivity analysis on the parameters identified as important in coastal erosion risk assessment;
- Start development of original methodology and respective GIS application.

Pedro Narra / Coastal Erosion Risk Assessment at Portuguese Speaking Countries

FUTURE DEVELOPMENTS

NEXT STUDY SITE TO ASSESS: TRANSECT BETWEEN PUNTA MAROMA AND PUNTA BETE, MEXICO

COASTAL EROSION RISK ASSESSMENT AT PORTUGUESE SPEAKING COUNTRIES Past and Future Development

Pedro Narra pedronarra@ua.pt Supervisors: Carlos Coelho (UA) and Francisco Sancho (LNEC)

Thank you for your attention and feedback!

※ 🗘