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 Part of a structure whose behavior is not well-understood is tested physically (e.g., 
soil-structure interaction, isolators, dampers, components with high non-linearity, 
etc.), while the remaining is modelled numerically

 Rate of test execution (λ=test duration/ground motion duration) can be:
• Slow (pseudo-dynamic testing, λ=50-200) - cannot capture rate-dependency 

• Fast (λ=10-50)

• Real-time (λ=1)

 Test formulation and mode of actuator control:
• Displacement-based   displacement control - easy and common in practice 

• Force-based method   force control - difficult but appropriate for stiff structures 

 Hardware performance and software efficiency are essential 

Hybrid simulation - a bridge between numerical analysis and laboratory 
testing!
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 Avoids scale effects 

 Economically attractive and feasible for practical application 

 Allows online numerical model-updating using experimental results

 Coupled response with other actions can be simulated numerically 

 Geographically distributed testing is possible

 Allows physical testing of energy dissipation devices in a structure 

Hybrid simulation as a seismic testing technique
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Integration scheme is preferred to be:

 Explicit – improves determinism of numerical solution

 Unconditionally stable – fulfills higher modes stability condition (small Δt)

 Controllable numerical damping – reduces the contribution of spurious modes

Attractive scheme: KR-α method (after Kolay and Ricles, 2014)
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 It is a one-parameter explicit method based on implicit generalized-α method 

 Algorithmic damping controlled by spectral radius (��)

 Good performance in terms of accuracy, negligible lower mode numerical damping and 
period elongation 

 Unconditionally stable for linear elastic and non-linear softening systems

1. Time-integration scheme 

Main issues in real-time hybrid simulation 
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• Accuracy analysis(using free-
vibration response):

Integration scheme discrete transfer 
function:
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 Energy dissipation - contributing 

modes are negligibly affected  

 Numerical dispersion - negligible 
period error in lower modes

• Stability analysis:
 Increased stability limit for 

increased numerical damping for 
softening systems

Note: spectral radius near unity under 
significant inherent damping may lead 
to � 
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1. Time-integration scheme 

Main issues in real-time hybrid simulation 
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Numerical analysis of a linear elastic 
3DOF frame with a high-frequency 
third mode under free vibration (no 
inherent damping)

Objective: demonstrate its efficiency 
in reducing third-mode contribution

1. Time-integration scheme 

Main issues in real-time hybrid simulation 
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Components of error:
 Response delay of actuator (20-80ms)

 Communication delay (~1ms)

 Computational delay (unit time step)

 Gain error (λ, instrumentation etc.)

• Effects of delay error:
 Inaccurate response 

 Stability problems due to negative damping introduced 

• Effects of gain error:
 Inaccurate response 

 Overshoot - add energy 

 Undershoot - remove energy

Main issues in real-time hybrid simulation 

2. Restoring force error compensation

Delay

Inclination<45� - undershoot; CCW rotation - Delayed signal
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Precarious effects of delay:
 Instability as the negative damping exceeds 

inherent damping
Instability analysis on linear elastic SDOF under no 
gain error with varying delay and damping for 
impulse response:

Comments: small delays lead to instability 
problems if system is lightly damped or element is 
stiff (e.g. squat wall)
 Critical delay investigation on SDOF with total 

stiffness modelled physically:
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Main issues in real-time hybrid simulation 

2. Restoring force error compensation
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Error compensation techniques:
 Model based 

 Inverse compensation
 Second-order compensation

 Adaptive method 
 Adaptive inverse compensation 
 Adaptive time series (ATS)

Attractive method: ATS
 Updates compensation parameters (A) at the rate of 

time integration clock speed using LS solution 
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Where m and c represent previously measured and 
compensated parameters, respectively, and t represents 
a target value  

Comparison of real time hybrid simulation using ATS  on 
moment resisting frame by Chae and Ricles (2012):
• higher performance can be achieved in large 

amplitude ground motion 
• triggering of ATS is found suitable to control signal to 

noise ratio

Main issues in real-time hybrid simulation 

2. Restoring force error compensation

• LP Butterworth of higher order can be 
considered for filtering 
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Integrating existing shake table facility 
architecture for HS framework:
 NI Field Programmable Gate Array (FPGA) as target 

machine
 NI Real-Time controller 
 NI SCXI data acquisition 
 3-stage servo-hydraulic actuator + 1-stage servo-

valve(uniaxial shake table)
 Rectangular laminar box for soil

Main issues in real-time hybrid simulation 

3. General hardware setup and framework for RTHS
 PID control and HSM (hydraulic service 

manifold) operate in the inner loop with 
NI I/O modules(NI PXI +NI SCXI)

 Compensated displacement is sent to 
servo-valve and measured quantities 
are recorded and manipulated in NI RT

 DMA (direct memory access) allows 
small latency 

 Error tracking using ATS parameters
 Computer solves equation of motion in 

the outer loop and deploys it to NI PXI

Outer loop
Inner loop

I.L

O.L
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 A four loop architecture using parallel execution of substructure counterparts 
 Synchronization of physical and analytical parts through linear ramping and last sub-step 

extrapolation based on Ke and Ce

 Summing up restoring force in outer loop for KR-α to solve equation of motion followed by 
updating acceleration to compute next step target displacement and velocity 

 Online error tracking allowing decision making (continue or abort test) 

Main issues in real-time hybrid simulation 

3. General hardware setup and framework for RTHS

Ramping loop
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1. Pseudo-dynamic tests

Plan of hybrid simulation tests at LNEC

1. Cantilever (Actuator error and ATS) [λ=50-200] 2. 2-Storey frame (KR-α and DOFs) [λ=50-200]

3. Shake table test (shake table errors + control 
issues) [λ=50-200]

4. Test involving SSI (SSI issues)[λ=50-200/10-50]

Objective: Gradual progress from slow to real-time tests, in order to perform:
 Assessment of existing integration schemes, error tracking methods and 

compensation techniques and possible improvements 
 Assessment of challenges using existing shake table control and solutions 
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2. Fast to real-time hybrid simulation tests

Plan of hybrid simulation tests at LNEC

5. Shake table + actuator at interface (displacement control?)[λ=10-50/1-10]

6. SSI, near and/or at real-time (real-time challenges and summary)[λ=1-10]
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