Infrastructures and Geotechnics

The effect of soil settlements on cultural heritage buildings, induced by underground structures. A preliminary study

Giorgos Karanikoloudis Supervision: Paulo Lourenço (U Minho), João Bilé Serra (LNEC)

Overview

Underground structures Cultural heritage

- Historical constructions of high social and cultural value extremely susceptible to damage and deterioration due to weathering and environmental actions • Low mechanical properties and brittle failure
- Often in close proximity of underlying networks estimation of the related damage and employment of extensive monitoring and appropriate mitigation techniques

Giorgos Karanikoloudis / The effect of soil settlements on cultural heritage buildings, induced by underground structures. A preliminary study.

- Historical constructions of high social and cultural value extremely susceptible to damage and deterioration due to weathering and environmental actions • Low mechanical properties and brittle failure
- Often in close proximity of underlying networks estimation of the related damage and employment of extensive monitoring and appropriate mitigation techniques
- Emerging demand on underground constructions aspects of efficacy, time transferring needs and obstruction in over-concentrated overground urban networks
- Induced settlements during excavation and service life design and construction stages still remain an open challenge • efficient mitigation techniques

 1st preliminary assessment • Greenfield settlement troughs in 3D space
• overlying space with no structure accounted • verification through data collection

Giorgos Karanikoloudis / The effect of soil settlements on cultural heritage buildings, induced by underground structures. A preliminary study.

Zo

 1st preliminary assessment • Greenfield settlement troughs in 3D space
• overlying space with no structure accounted • verification through data collection

More than one tunnels • relative depth and distance from centre points,

 settlement troughs is derived as the superposition of troughs from single tunnels
lower the quality of Gaussian fitting

More than one tunnels • relative depth and distance from centre points,

 settlement troughs is derived as the superposition of troughs from single tunnels
lower the quality of Gaussian fitting

More than one tunnels • relative depth and distance from centre points,

 settlement troughs is derived as the superposition of troughs from single tunnels
lower the quality of Gaussian fitting

Underground structures in urban environment Short-term settlement profile – Construction process

- Face loss: Counteracting applied pressure in the plane of the cutter head • the induced settlement can be controlled and minimized
- Radial loss in shield: By the use of EPB, the soil pressure in the circumference of the boring machine can be reduced
- Radial loss behind the shield (tail void): Portion of the face is unsupported and radial deformations evolve • common practice to directly inject grout under pressure and can keep the deformation of the tunnel face within certain limits (V_L).

Underground structures in urban environment Overlying structures – Damage categories

Underground structures in urban environment Cultural heritage buildings – Soil/structure interaction

The Kuño Tambo Church, Peru

Mode 1 (1.59 Hz) Damping=0.71%

Mode 2 (2.15 Hz)

Damping=3.67%

- Dynamic identification tests
- Independent orthogonal bending modes, of 1st and 2nd order
- Mode shapes in out-of-phase symmetric patterns, with high peaks and similar amplitudes
- Low level of connectivity
- Damage related

Underground structures in urban environment Cultural heritage buildings – Soil/structure interaction

The Kuño Tambo Church, Peru

- Correlation of experimental and numerical modal results
- Adjusting the frequency and mode vectors of the 1st Mode (1.59 Hz)

	Global m	Global model with material properties from sonic tests [3]											
	Springs at base		Interfaces										
			South façade		North façade		Sacristy		Buttresses		Baptistery		
	Kz	K _{x,y}	Kn	Ks	Kn	Ks	Kn	Ks	Kn	Ks	Kn	Ks	
	(N/mm)	(N/mm)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	(N/mm^3)	
	2900	1160	0.0022	0.0011	0.0022	0.0012	0.0022	0.0012	0.0022	0.0011	0.0022	0.0011	

Dynamic test

Modal analysis

Mode 1 (1.59 Hz) Damping=0.71%

Mode 1 (1.59 Hz) SSI - Univerginted Principal Component

Advanced numerical modelling

- Tunnel construction sequence and techniques
- Multiple tunnel construction
- Arbitrary alignment of tunnels' main axis with structures of interest
- Complex soil stratigraphy and hydraulic conditions
- Local ground treatments (i.e. grouting)
- Adjacent overlying structures and services
- Long term settlement conditions and brittle failure

made ground

silty clay

The subway metro project in Esfahan, Iran

- Excavations underneath the historic center
- Monitoring of the evolution and magnitude of the induced settlements

Design recommendations for 2nd construction phase

Giorgos Karanikoloudis / The effect of soil settlements on cultural heritage buildings, induced by underground structures. A preliminary study.

Acknowledgments

Partly supported by FCT (Portuguese Foundation for Science and Technology) within ISISE project UID/ECI/04029/2013