SEISMIC ASSESSMENT OF THE MASONRY "GAIOLEIRO" BUILDINGS IN LISBON. CASE STUDY AND SENSITIVITY ANALYSIS.

Author: Ana Simões

TÉCNICO LISBOA ıſ

ICIST ZNE<

U. PORTO

Advisors: Rita Bento (IST, Universidade de Lisboa, Portugal) Sergio Lagomarsino (University of Genoa, Italy) Paulo Lourenço (University of Minho, Portugal)

universidade

de aveiro

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-July 8th 2016

Motivation

• Masonry buildings were built for many centuries based on the available materials and empirical provisions.

• "Gaioleiro" buildings (19-20th centuries) is the typology with the <u>highest</u> structural weaknesses of the building stock of Lisbon.

Objective of the PhD research work

- Evaluation of the seismic vulnerability of "Gaioleiro" buildings based on seismic performance-based assessment procedures;
- Design of strengthening solutions for the reduction of the seismic vulnerability including cost-benefit analysis to compare the solutions;
- Definition of fragility curves before and after strengthening.

Outline

- The "gaioleiro" buildings
- Definition of the case study
- Analyse of uncertainties
- Sensitivity analysis
- Final comments

Avenidas Novas

The "gaioleiro" buildings

- Buildings with 4 to 7 storeys high
- External walls: rubble limestone masonry and air lime mortar
- Internal walls: solid or hollow brick masonry and air lime mortar
- Floors: timber beams placed perpendicular to the main façade walls

Type I

Type III

Type IV

Simões, A. G.; Appleton, J. G.; Bento, R.; Caldas, J. V.; Lourenço, P. B.; Lagomarsino, S. (2016). Architectural and structural characteristics of masonry buildings on the transition between the 19th and 20th centuries in Lisbon, Portugal. International Journal of Architectural Heritage (under review).

The "gaioleiro" buildings

Simões, A.; Bento, R.; Lagomarsino, S.; Lourenço, P. B. (2016). Simplified evaluation of seismic vulnerability of early 20th century masonry buildings in Lisbon. Proceedings of the 10th International Conference on Structural Analysis oh Historical Constructions – SAHC2016, Leuven, Belgium.

Ana Simões / Seismic assessment of the masonry "gaioleiro" buildings in Lisbon. Case study and sensitivity analysis.

Av. de Berna

RC buildings
Mixed buildings

Masonry buildings
 Single buildings

Definition of the case study

Masonry buildings

Definition of the case study

- Building type I: asymmetric structure.
- Model with 3 buildings to analyse different boundary conditions.
- Numerical model defined in Tremuri Program according to the equivalent frame model approach.

Analyse of uncertainties: epistemic

- Ground floor configuration: housing vs. shopping
- Constructive details: shared vs. independent side walls
- Side wall materials: solid brick vs. hollow brick masonry
- Main internal walls: solid brick vs. hollow brick vs. timber
- Partition walls: hollow brick vs. timber ("tabique")

• Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.

$$P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(B)}$$

Material	Reference	f₀ (MPa)	E (GPa)	∞ (MPa)	
Rubble Stone	INTC (2009)	1.00 – 1.80	0.69 – 1.05	0.030 - 0.048	
	Update	0.84 – 1.07	0.62 – 0.88	0.018 - 0.026	
Solid Brick	INTC (2009)	2.40 - 4.00	1.20 – 1.80	0.060 - 0.092	
	Update	0.95 – 1.19	0.72 – 0.99	0.060 - 0.092	
Hollow Brick	INTC (2009)	2.40 - 4.00	1.20 - 1.80	0.060 - 0.092	
	Updated	0.76 – 1.00	0.72 - 0.99	0.060 - 0.092	

Flat-jack tests

Simões, A.; Bento, R.; Gago, A; Lopes, M (2015). Mechanical characterization of masonry walls with flatjack tests. Experimental Techniques. Doi: 10.111/ext.12133.

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).
- Modelling of spandrels with brick arch on the façade walls.

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).
- Modelling of spandrels with brick arch on the façade walls.
- Timber ("tabique") wall properties from experimental results.

Rebelo, A.; Guedes, J. M.; Quelhas, B.; Ilharco, T. (2015) Assessment of the mechanical behaviour of tabique walls through experimental tests. Proceedings of the 2nd International Conference on Historic Earthquake-Resistant Timber Frames in the Mediterranean Region – H.E.a.R.T 2015. LNEC.

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).
- Modelling of spandrels with brick arch on the façade walls.
- Timber ("tabique") wall properties from experimental results.
- Stiffness of timber floors (G) NZSEE code.

Direction of loading	Joist continuity	Condition rating	Shear stiffness [†] , G _d (kN/m)
Parallel to joists	Continuous or discontinuous joists	Good	350
		Fair	285
		Poor	225
Perpendicular to joists ^{††}	Continuous joist, or discontinuous joist	Good	265
	with reliable mechanical anchorage	Fair	215
		Poor	170
	Discontinuous joist without reliable	Good	210
	mechanical anchorage	Fair	170
		Poor	135
A PLACE			

Note:

Values may be amplified by 20% when the diaphragm has been renailed using modern nails and nail guns

†† Values should be interpolated when there is mixed continuity of joists or to account for continuous sheathing at joist splice

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).
- Modelling of spandrels with brick arch on the façade walls.
- Timber ("tabique") wall properties from experimental results.
- Stiffness of timber floors (G) NZSEE code.
- Connections between walls (A and I of link beams).

- Masonry properties (*E*, *G*, f_c , τ_0) determined with the Bayes Theorem.
- Modelling of masonry elements: multilinear constitutive law (K, δ and β).
- Modelling of spandrels with brick arch on the façade walls.
- Timber ("tabique") wall properties from experimental results.
- Stiffness of timber floors (G) NZSEE code.
- Connections between walls (A and I of link beams).

Туре	Group	Random Variable	Units	Median	Standard Deviation
Rubble Stone Masonry	1	Е	MPa	491.0	0.180
		G	MPa	163.7	0.180
		fc	MPa	0.95	0.120
	2	το	MPa	0.022	0.184
Solid Brick Masonry	3	Е	MPa	560.4	0.160
		G	MPa	186.8	0.160
		fc	MPa	1.07	0.113
	4	το	MPa	0.074	0.214
	5	<i>µ</i> lloc	-	0.529	0.280
	6	Е	MPa	560.4	0.160
		G	MPa	186.8	0.160
Hollow Brick Masonry		fc	MPa	0.87	0.135
	7	το	MPa	0.074	0.214
	8	<i>µ</i> lloc	2	0.529	0.280

17 groups and 50 random variables Lognormal and Beta distributions

1000 Monte Carlo simulations

Sensitivity analysis

Sensitivity analysis

Final comments

- 8 models x 1000 MC simulations.
- Pushover analysis: 2 load pattern (U/T) x 2 directions (X/Y) x 2 ways (+/-).
- 8 thousand analyses!
- PGA compatible with different limit states.
- Definition of numerical fragility curves for this class of buildings.

Future work

- Analysis of the local behaviour: out-of-plane mechanisms.
- Modelling of strengthening techniques to reduce the seismic vulnerability.
- Derivation of the corresponding fragility curves.

Thank you!