ROBUSTNESS OF MULTI-STOREY TIMBER BUILDINGS IN SEISMIC REGIONS

Leonardo Rodrigues PhD student Department of Civil Engineering, ISISE, University of Minho, Portugal Jorge M. Branco Department of Civil Engineering, ISISE, University of Minho, Portugal Luis C. Neves Nottingham Transport Engineering Centre, University of Nottingham, United Kingdom

TÉCNICO LISBOA

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Topics

- 1. Introduction
- 2. Objectives
- 3. Framework for robustness assessment
- 4. Progressive collapse assessment procedures
- 5. Numerical models for progressive collapse assessment of timber structures
- 6. Robustness assessment of multi-storey timber structures

Introduction

Seismic design provisions

Robustness design recommendations

- Simplicity
- Uniformity
- Symmetry
- Redundancy
- Bi-directional strength and stiffness
- Torsional resistance and stiffness
- Diaphragmatic behaviour at the storey level
- Adequate foundations

- Alternate load paths
- Effective horizontal ties
- Vertical ties to ensure stability
- Effective anchorage of suspended floors to walls
- Ductility
- Redundancy
- Compartimentalisation;

Introduction

Compartmentalisation

- Reduction of the costs of failure
- Avoid load redistribution
- Cut of alternate load paths

Introduction

Alternate load paths

- Redundancy to distribute loads to undamaged elements
- Reserve of resistance to withstand the load increment
- Ductility to achieve large deformations

Objectives

- Methodology for assessment of robustness
- Numerical models for robustness analysis of timber structures
- Robustness assessment of multistorey timber buildings
- Propose guidelines to robustness design of timber structures

Introduction

Task 1

Robustness measures for timber structures

How to quantify robustness?

Deterministic robustness index

 $I_{rob} = \frac{P_{(damaged,i)}}{P_{(intact)}}$

Reliability based robustness index

$$RI = \frac{P_{f(aamaged)} - P_{f(intact)}}{P_{f(intact)}} \qquad \beta_R = \frac{\beta_{(intact)}}{\beta_{(intact)} - \beta_{(damaged)}} \qquad I_{Rob} = \frac{\beta_{(damaaged)}}{\beta_{(intact)}}$$

Risk-based robustness index

$$I_{Rob} = \frac{R_{dir}}{R_{dir} + R_{ind}} \qquad \qquad I_{Rob|exposure} = \frac{R_{dir|exposure}}{R_{dir|exposure} + R_{ind|exposure}}$$

Exposures

Mechanical properties

Expected loads

Damage

Failure

Consequences

Impacts and explosions

- Notional removal of primary load-bearing members

Human Errors

- Local and global reduction of mechanical characteristics of timber elements and connections

Exposures

Mechanical properties

Expected loads

Damage

Failure

Consequences

Timber elements

-Modelled according to JCSS PMC-Spatial variability between elements (correlated variables)

Connections

-Stiffness and strength dependent of metal connectors and timber density -Spatial variability between connections

Exposures

Mechanical properties

Expected loads

Damage

Failure

Consequences

Self-weigth (JCSS PMC) -Normal distribution

Live-Loads

-Sustained loads (type I extreme value distribution) -Transient loads (Exponential distribution)

Wind loads

-Gumbel distribution -Considering characteristic values given by Design Codes (e.g EN-1991-1-4)

Snow loads

-Gumbel distribution -Considering characteristic values given by Design Codes (e.g EN-1991-1-3)

Exposures

Mechanical properties

Expected loads

Damage

Failure

Consequences

Related to loss of capacity of individual components of the system.

Exposures

Mechanical properties

Expected loads

Damage

Consequences

Failure occurs when the extension of damage reaches 15% of the area of floor or it is higher than 100m²

Partial collapseProgressive collapse

Exposures

Mechanical properties

Expected loads

Damage

Failure

Consequences

Consequences of damage and failure :

Damaged area
Structural system

•Repair, re-qualification and demolishing

Quantification of robustness

Risk-based robustness index

 $I_{Rob} = \frac{R_{dir}}{R_{dir} + R_{ind}}$

$$R_{dir} = \sum_{i} \sum_{j} C_{dir,ij} P(D_j | EX_i) P(EX_i)$$
$$R_{ind} = \sum_{k} \sum_{i} \sum_{j} C_{ind,ijk} P(S_k | D_j \cap EX_i) P(D_j | EX_i) P(EX_i)$$

Quantification of robustness

$$RI = \frac{P_{f(damaged)} - P_{f(intact)}}{P_{f(intact)}}$$

$$\beta_{R} = \frac{\beta_{(intact)}}{\beta_{(intact)} - \beta_{(damaged)}}$$

$$I_{Rob} = \frac{\beta_{(damaaged)}}{\beta_{(intact)}}$$

Reliability based robustness index

Damage scenarios -Failure of connections -Failure of timber elements

Probabilistic assessment -Monte Carlo simulations

Variability of typical loads Variability of mechanical characteristics

Non-linear static analysis

How prone a structure is to disproportionate collapse given a local failure?

Identify key elements

Quantification of robustness

Deterministic robustness index

- Characteristic values for timber elements and connections

Nonlinear static analysis

$$I_{rob} = \frac{P_{(damaged,i)}}{P_{(intact)}}$$

Redundancy assessment

Identify key elements

Application of deterministic methods

Post and Beam structure

Continuous beams Tie cables as bracing system

Alternative design

Continuous columns Tie cables as bracing system

Application of deterministic methods

2D pushover analysis

Deterministic robustness index

Model	P _{int} [kN]	P _{dam} [kN]	I _{rob}
Existing	1683.6	883.4	0.525
Model 1	2170.1	210.7	0.097
Model 2	2105.9	285.8	0.136

Main conclusion:

Simple models without propagation of damage restrains the conclusions since they do not consider the total effects of ductility and redundancy.

Structural modeling for robustness analysis

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

Failure Modes assessment

Timber elements

Brittle failure for bending, shear and axial forces

Connections

Brittle and ductile failure modes

Opensees finite element framework allows user defined computations and changes in the structural model after each analysis step

Procedures for progressive collapse assessment

Procedures for progressive collapse assessment

Procedures for progressive collapse assessment

Numerical analysis for robustness

Nonlinear static analysis

Timber elements - Linear elastic

Material nonlinearities •Bi-linear curves •Stiffness updating

Geometric nonlinearities •P-Delta effects •Corotational transformation

Numerical models for earthquakes

Nonlinear dynamic analysis

Timber elements - Linear elastic

Material nonlinearities (connections) •bi-linear curves •Modified Ibarra Krawinkler models •Bouc – Wen – Baber - Noori

(FP1101 – Short term scientific mission – University of Trento)

Objective:

Evaluate the influence of sophisticated models on vulnerability assessment

Numerical models for earthquakes

Nonlinear dynamic analysis

Timber elements - Linear elastic

Material nonlinearities (connections) •bi-linear curves •Modified Ibarra Krawinkler models •Bouc – Wen – Baber - Noori

(FP1101 – Short term scientific mission – University of Trento)

Objective:

Evaluate the influence of sophisticated models on vulnerability assessment

Robustness assessment of multi-storey timber structures

Design of different structural typologies

Post and beam

Portal frames

CLT structures

Analysis methods:

Linear static analysis

Linear dynamic analysis

Robustness assessment of multi-storey timber structures

Application of the robustness framework

Compare redundancy and ductility levels of different systems.

Which structural topologies lead to high robustness?

Which exposures have more influence on this classification?

Evaluate the correlation between seismic behaviour and robustness.

Propose guidelines to design robust timber buildings.