Influence of infill masonry walls on RC buildings

João Mário

Humberto Varum Panagiotis Asteris

Influence of infill masonry walls on RC buildings

Motivation

Literature review

Research plan

Research field

Seismic engineering Mitigation of seimic risk

Numerical modelling

Motivation – Natural disasters

Geophysical disasters

Economical impact

Motivation – Scientific attention

Seismic Risk

Hazard "x" Vulnerability "x" Exposure

Thierry Legault, 2012 (legault.perso.sfr.fr). Dabarti CGI (www.shutterstock.com). Unknown. AP Photo/Itsuo Inouye, 2009. Unknown. Unknown.

Seismic risk = Hazard x Vulnerability x Exposure

Structural elements

Non-structural elements

Boundary (foundation, soil, pounding,...)

Seismic risk = Hazard x Vulnerability x Exposure

Structural elements

Interaction

Non-structural elements

Boundary (foundation, soil, pounding,...)

Influence of infill walls

Globally

Influence of infill walls

Advantages	Disadvantages
Structure protection for low and medium earthquakes	Degradation of stiffness, strength and energy dissipation capacity
Higher stiffness	Stiffness irregularity in height (soft-storey) and in plan (torsion)
Higher strength	Strength irregularity in height (weak-storey)
Reduction of lateral resisting contribution from the columns	Concentration of shear in columns beams and joints
Reduction of deformations on the structure Higher energy dissipation capacity	Increase of axial loads on columns Higher stress demand due to higher frequencies, especially on the foundations

Failure modes

In-plane

Failure modes

In-plane

Literature review

Lessons from earthquakes	~20
Seismic standards	~20
Experimental work	~125
Numerical modelling	~70
Macro-modelling	~40
Micro-modelling	~30

Lessons from earthquakes

		City, Country	Year	M_w	Deaths	Losses
		San Francisco, USA	1906	7.8	3,425	
Earthoual	kes in study	Guatemala City, Guatemala	1976	7.5	23,000	
		Loma Prieta, USA	1989	6.9	63	>US1,000 M
World	16	Northridge, USA	1994	6.7	58	>US $$50,000M$
		Kobe, Japan	1995	6.8	6,434	>US $$100,000M$
Europe	4	Dinar, Turkey	1995	6.2	90	US\$250M
1		Jabalpur, India	1997	6	39	
		Adana-Ceyhan, Turkey	1998	5.9	145	US\$1,000M
I		Athens, Greece	1999	6	143	US\$3,000M
Low quality of materials		Kocaeli, Turkey	1999	7.5	17,127	US\$23,000M
Insufficient constructive detailing		Duzce, Turkey	1999	7.2	894	US\$40M
		Cuieret India	1999	7.0	2,410	US\$9,200M
Insufficient shear strength		Gujarat, India Bingöl Turkov	2001	1.1 6.4	20,000	>05910,000101
		Sumatra Indonesia	2003	0.4	280.000	\US\$10.000M
Vulnerability of infill walls		Sichuan, China	2004	8	62.664	>US\$100,000M
		L'Aquila, Italy	2009	6.3	308	US\$10,000M
		Maule, Chile	2010	8.8	525	US\$30,000M
		Haiti	2010	7	300,000	US\$8,000M
Collapses		Christchurch, New Zealand	2011	6.3	181	US\$20,000M
		Tohoku, Japan	2011	9	$15,\!800$	US\$300,000M
Due to irre	egularities on the	Van, Turkey	2011	7.1	604	US\$2,000M
11 A 11		Lorca, Spain	2011	5.1	9	US\$99M
distrik	oution of the infill walls	Bologna, Italy	2012	6.1	26	US\$13,000M
		Iquique, Chile	2014	8.2	7	US\$100M

Seismic recommendations

Philosophies

Standards ~20

- 1 Isolation of infill masonry walls
- 2 Allow the use of infill walls on the designing
- 3 Connection between infill walls and structure is mandatory

Formulations of different natural frequencies Irregularities in height and plan (structural and non-structural elements) Minimal strength capacity for the infill walls Deformation limitation to control damages Recommendations regarding positioning of openings on infill walls

Experimental work

Number of experimental campaigns

Linear growth with time

Monotonic testing dropped and cyclic testing

~125

Experimental work

Decrease of aspect-ratio (h/l) leads to an increase of the ultimate capacity Gaps on infill-frame interface decreases considerably the horizontal strength Building's stiffness do not increase linearly with the number of walls Openings close to edges reduce more the capacity of the wall than centred Openings usually increase the ductility of the system

Vertical loading on columns increase of stiffness and resistance of the system due to increase of confinement of the wall

Eccentricity of the wall relative to the frame plane centre-line leads to out-ofplane bending effects, reducing both initial stiffness and ultimate capacity Horizontal bond beam increase the ductility of the system

Author, Year	Scale	Type	Wall	Frame	Wall	Tests
[Thomas, 1953]		Μ	IP	Steel	B,C	
Ockleston, 1955	1	Μ	IP	\mathbf{RC}	в	
[Benjamin and Williams, 1958, 1959]	1 - 1/8	Μ	IP	RC	С	20
[Wood, 1958]		Μ	IP	Steel		
[Sachanski, 1960]	1	Μ	IP,O	RC	B,C	31
[Holmes, 1961]	1	Μ	IP	RC	B,C	

. . .

Refined models vs Simplified models

Micro-modelling (refined)

~ 30

~40

Macro-modelling (simplified/analytical)

	Micro-modelling	Macro-modelling
1	Higher detailed modelling	Simplified models compared
	Allow interpretation of the behaviour at	Allow a representation of the global
2	local level and to obtain cracking patterns,	behaviour of the infill masonry panels and
	ultimate load, and collapse mechanisms	of their influence in the buildings response
3	Need a large number of parameters	Usually modelled as an equivalent strut
4	Higher computational effort	Lower computational effort
5	Useful for the calibration of global models	-

Numerical limitations

Models with combined in-plane and out-of-plane's behaviour Failure curve of infill masonry walls for actions in both directions

Parametric studies (and experimental) of double-leaf walls

Calibration of simplified models for retrofitting interventions

Research plan

Parametric study with a semi-refined model Abaqus

Development of a macro-model OpenSees

Parametric study

Volume elements Continuum element for infill wall

Study:

Dimensions

Properties of materials

Infill-frame interface conditions

Eccentricities

Single- and double-leaf walls

Frame

Used on the calibrations of the simplified model

João Mário | Influence of infill masonry walls on the behaviour of reinforced concrete buildings

 ${ \longleftarrow } { Connections }$

#1 Wall-Frame - Contact#2 Interface-Frame - Friction and tension#3 Interface-Wall - Friction and tension

Frame

Elastic

Wall

Concrete Damage Plasticity Model With damage

Simplified models

(Limitations of models with single-struts)

Out-of-plane behaviour

Interaction between two masonry walls and its connections

Interaction curve

Simplified approach for assessment of failure's strength for actions combined in both directions: in-plane and out-of-plane

Applicability on the simulation of real (and complex) study cases

FEMuA++

Software for structural analysis Programming language: C++ (used in OpenSees) (Pre- e post-processing in GiD)

Numerical developments

Semi-refined modelling Abaqus

Macro modelling

OpenSees

Conclusions Objectives

Compilation and organization of the state-of-the-art in a database

Development of a parametric study

Development of a macro-model able to describe the behaviour of infill masonry walls with combined in-plane and out-of-plane actions

Improve the knowledge regarding the influence of infill masonry walls on the behaviour of reinforced concrete buildings

Creation of new methodologies for the designing and assessment of reinforced concrete structures with infill masonry walls

Influence of infill masonry walls on RC buildings

João Mário

Humberto Varum Panagiotis Asteris

