DESIGN PROCEDURES

Rita Peres, Rita Bento, Miguel Castro

Manuscript prepared April, 2011

Table of contents	
DESIGN PROCEDURES	1
INTRODUCTION	3
DESIGN OF THE STUDIED STRUCTURES	4
1 STRUCTURES CONFIGURATION (1 storey structures)	4
1.1 GROUP 1 - Structures with stable hysteretic behavior (MRF)	4
1.2 GROUP 2 - Structures with unstable hysteretic behavior (CBF)	5
2 MATERIALS	5
3 LOADS	6
3.1 Static Loads	6
3.2 Seismic Loads	6
4 LOAD COMBINATIONS	7
5 STATIC DESIGN	7
6 SEISMIC DESIGN	11
REFERENCES	15
APPENDIX- SUMMARY OF THE DESIGN PROCEDURES	

INTRODUCTION

In the scope of the research project POCI/ECM/59306/2004, a group of steel structures is being selected and designed in order to be assessed, in terms of seismic performance, by the non linear static procedures.

The aim of the research is to extend the use of these procedures to 3D irregular structures, therefore the evaluation of the torsional phenomena, and its effects in seismic response are crucial for a complete understanding of the study results. For this reason the following groups of 1 storey structures, with different torsional characteristics and different hysteretic behaviors, was selected:

GROUP 1- Steel structures with stable hysteretic behavior (the seismic lateral resisting systems selected were Moment Resisting Frames)

- 1. Laterally unrestrained regular structures (CM=CR=CV);
- 2. Laterally unrestrained irregular structures (different locations for CM,CR and CV);
- 3. Laterally restrained regular structures (CM=CR=CV);
- 4. Laterally restrained irregular structures (different locations for CM, CR and CV).

GROUP 2- Steel structures with unstable hysteretic behavior (the seismic lateral resisting systems selected were Concentric Braces Frames)

- 5. Laterally unrestrained regular structures (CM=CR=CV);
- 6. Laterally unrestrained irregular structures (different locations for CM,CR and CV);
- 7. Laterally restrained regular structures (CM=CR=CV);
- 8. Laterally restrained irregular structures (different locations for CM, CR and CV).

In the present report, a description of the structures configuration and the design procedures is presented. The static design procedure followed the EC3 [CEN, 2005] recommendations and the seismic design followed the IFBD procedure [Villani, 2009] which consists of a more rational sequence of the design steps prescribed by EC8 [CEN, 2004] and a more realist selection of the structure's behaviour factor.

1 STRUCTURES CONFIGURATION (1 storey structures)

1.1 GROUP 1 - Structures with stable hysteretic behavior (MRF)

Figure 1- Laterally unrestrained regular & irregular structures (structures 1 & 2)

Figure 2- Laterally restrained regular & irregular structures (structures 3&4)

1.2 GROUP 2 - Structures with unstable hysteretic behavior (CBF)

Figure 3- Laterally unrestrained regular & irregular structures (structure 5 & 6)

Figure.4- Laterally restrained regular & irregular structure (structure 7&8)

2 MATERIALS

Table.1- Materials properties

Materials properties	
Modulus of elasticity, E	210 GPa
Yield strength, f_y	275 MPa
Ultimate strength, f_u	430 MPa
Poisson coefficient, v	0,3

3 LOADS

3.1 Static Loads

	Dead Loads- G	Live Loads- Q
	$[kN/m^2]$	$[kN/m^2]$
Slab self weight	2,93	2,00
Finishings	1,00	

Table.1- Static unit loads

Note: The wind load is not considered in the design

3.2 Seismic Loads

As prescribed in Part1 of Eurocode 8 "the ground motion at given point on the surface is represented by an elastic ground acceleration response spectrum",

It was assumed a Type 1 response spectra and soil type B: S = 1,2; $T_B = 0,15$; $T_C = 0,50$ and $T_D = 2,0$.

The design response spectrum, $S_d(T)$, is obtained from the elastic response spectrum by dividing it by the behaviour factor (q).

Figure.1- Elastic Response Spectra (Type 1; Soil type B; PGA=0,30g)

4 LOAD COMBINATIONS

The design load combinations considered are related with the ultimate and serviceability limit states, as recommended by ECO [CEN, 2002]:

Ultimate limit state combinations (ULS)

- Persistent and transient design situation

$$F = \gamma_G \cdot G_k + \gamma_Q \cdot Q_k \tag{4.1}$$

with $\gamma_G = 1,35$ and $\gamma_Q = 1,5$.

- Seismic combination

$$F_d = G_k + \gamma_E E_{Ek} + \psi_2 \cdot Q_k \tag{4.2}$$

with $\gamma_1 = 1,00$ and $\psi_2 = 1,0$ or $\psi_2 = 0,0$ (if the last floor is the roof).

Serviceability limit state combination (SLS)

$$F_d = G_k + Q_k \tag{4.3}$$

5 STATIC DESIGN

The static design procedure followed the next sequence of steps:

1. Selection of initial columns and beams sections

The required columns and beams sections are selected based on a preliminary analysis of the vertical loading.

2. Structural analysis

The second order effects, due to lateral displacement as result of the vertical loading, do not need to be incorporated in the structural analysis if $\alpha_{cr} \ge 10$. However, if $\alpha_{cr} \ge 3.0$ a first order analysis can also be performed through the amplification of the horizontal loading.

The amplification factor is that given by:

$$\frac{1}{1 - \frac{1}{\alpha_{cr}}}$$
(5.1)

The parameter α_{cr} can be computed through the expression:

$$\alpha_{cr} = \left(\frac{H_{Ed}}{V_{Ed}}\right) \cdot \left(\frac{h}{\delta_{H,Ed}}\right)$$
(5.2)

where

 H_{Ed} is the reaction in the base of the storey to the horizontal loads applied to the structure;

 V_{Ed} is the total vertical load applied to the structure;

 $\delta_{H,Ed}$ is the horizontal displacement due to the horizontal loads applied to the structure; *h* is the storey height.

The equivalent horizontal loads due to the effect of imperfections, H_{Ed} , are given as the product of the vertical loads, V_{Ed} applied to the structure and the equivalent geometric imperfection, ϕ :

$$H_{Ed} = \phi \cdot V_{Ed} \,. \tag{5.3}$$

The equivalent geometric imperfection considered in the global analysis, that leads to lateral displacements and consequently to second order effects, was calculated using the following expression, given in Eurocode 3:

$$\phi = \phi_0 \cdot \alpha_h \cdot \alpha_m \tag{5.4}$$

where

 $\theta_0 = 1/200$

$$\alpha_h = 2/\sqrt{h}$$
 is the reduction coefficient associated with the storey height $(2/3 \le \alpha_h \le 1.0)$

 $\alpha_h = \sqrt{0.50 \cdot \left(1 + \frac{1}{m}\right)}$ is reduction coefficient associated to the number of columns in

each storey. The parameter m represents the number of columns in each storey that are subjected to an axial force equal or higher than 50% of mean value for column in the vertical plan considered.

The member imperfections are accounted for in the individual stability member checks, as prescribed in Section 6.3 of EC3.

3. ULS checks

After computing the real actions applied to the structure, the selected member sections have to satisfy the ULS strength requirements in terms of cross section and member stability (Sections 6.2 and 6.3 of EC3, respectively).

Strength requirements

$$\frac{N_{Ed}}{N_{c,Rd}} \le 1.0 \tag{5.5}$$

$$\frac{V_{Ed}}{V_{c,Rd}} \le 1.0 \tag{5.6}$$

$$\frac{M_{Ed}}{M_{c,Rd}} \le 1.0 \tag{5.7}$$

$$M_{Ed} \le M_{N,Rd} \tag{5.8}$$

where N_{Ed} , M_{Ed} and V_{Ed} are the design axial force, bending moment and shear, respectively;

 $N_{c,Rd}$, $M_{c,Rd}$, $V_{c,Rd}$ and $M_{N,Rd}$ are the design resistances computed as following (Sections 6.2.4, 6.2.5, 6.2.5 and 6.2.8, respectively):

$$N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} \text{ for class 1,2 and 3 cross-sections}$$

$$V_{c,Rd} = V_{pl,Rd} = \frac{A_y \cdot f_y / \sqrt{3}}{\gamma_{M0}}$$

$$M_{c,Rd} = M_{pl,Rd} = \frac{w_{pl} \cdot f_y}{\gamma_{M0}} \text{ for class 1 and 2 sections}$$

$$M_{N,y,Rd} = M_{pl,y,Rd} \cdot (1-n) / (1-0.5 \cdot a); M_{N,y,Rd} \leq M_{pl,y,Rd} \cdot n \leq a : M_{N,z,Rd} = M_{pl,z,Rd}$$

$$n \geq a : M_{N,z,Rd} = M_{pl,z,Rd}$$
With $n = N_{Ed} / N_{pl,Rd}; a = (A-2 \cdot b \cdot t_f) / A \text{ and } a \leq 0.50;$

$$\gamma_{M0} = 1,0$$

Stability requirements

Elements subjected to compression should satisfy the following expression:

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1.0\tag{5.9}$$

where

 N_{Ed} and $N_{b,Rd}$ are the design axial load and design bucking resistance, respectively, given by

$$N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{M1}} \text{ (for class 1,2 and 3 cross-sections)}$$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda^2}}}, (\chi \le 1.0) \quad \Phi = 0.5 \left[1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right]$$

$$\overline{\lambda} = \lambda / \lambda_1$$

$$\lambda = l_e / i$$

$$\lambda_1 = \pi \cdot \sqrt{\frac{E}{f_y}}$$

$$\gamma_{M1} = 1,0$$

Elements subjected to bending moment :

$$\frac{M_{Ed}}{M_{b,Rd}} \le 1.0 \tag{5.10}$$

where M_{Ed} and $M_{b,Rd}$ are the design bending moment and the bucking bending moment resistance, respectively. The buckling resistance for cross-sections class 1 and 2 can be computed through the expression $M_{b,Rd} = \frac{\chi_{LT} \cdot W_{pl} \cdot f_y}{\gamma_{M1}}$.

It was assumed that appropriated measures were adopted in order to avoid lateral torsional buckling of structural elements, therefore both beams and columns were considered laterally restrained ($\chi_{LT} = 1.0$).

Members of class 1 and 2 cross-sections subjected to combined bending and axial compression should satisfy:

$$\frac{N_{Ed}}{\chi_{y} \cdot N_{Rk}} + k_{yy} \cdot \frac{M_{y,Ed}}{\chi_{LT}} + k_{yz} \frac{M_{z,Ed}}{\gamma_{M1}} + k_{yz} \frac{M_{z,Ed}}{\gamma_{M1}} \le 1.0 \qquad ((5.11)$$

$$\frac{N_{Ed}}{\chi_{z} \cdot N_{Rk}} + k_{yz} \cdot \frac{M_{y,Ed}}{\chi_{LT}} + k_{zz} \frac{M_{z,Ed}}{M_{z,Rk}} \le 1.0 \qquad (5.12)$$

where

 N_{Ed} , $M_{v,Ed}$, and $M_{z,Ed}$ are the design axial load and bending moments;

 N_{Rk} , $M_{y,Rk}$, and $M_{z,Rk}$ are the design axial load and bending moments resistences;

 χ_{y} , χ_{z} are the reduction factors due to buckling in compression;

 χ_{LT} is the reduction factor due to lateral buckling;

 $k_{yy}, k_{yz}, k_{zz}, k_{zy}$ are the interaction factors, computed as indicated in Annex B.

4. SLS checks

The SLS's vertical deformation consists of the following check as prescribed in Section 3.4 of EC:

$$\delta_{\max} < \frac{L}{250} \tag{5.13}$$

Where δ_{mac} is total vertical deflection and L is the beam span.

6 SEISMIC DESIGN

The seismic design procedure followed the IFBD procedure (Improved Forced Based Design) proposed by Villani [2009].

The sequence of design steps of the IFBD procedure is the following:

1. Selection of the lateral resisting system and static design for gravity loads;

Figure 1- Plan view of the torsionally unrestrained and regular structure

2. Determination of the seismic elastic forces based on the structure's fundamental period:

$$V_e = \lambda \cdot m \cdot S_e(T_1) \tag{6.1}$$

where λ is the correction factor (0,85), m is the mass of the system, T_1 is the fundamental period of vibration of the system and $S_e(T_1)$ is the ordinate of the elastic response spectrum;

3. Serviceability Limit States (SLS) interstorey drift checks and eventual increase of **the structural stiffness.** For buildings having ductile structural elements:

$$d_r \cdot \upsilon \le 0,01h \tag{6.2}$$

Where d_r is the inter-storey drift, h is the storey drift and v is the reduction factor that takes into account the lower return period of the seismic action associated with the damage limitation requirement (it is recommended 0,5 for buildings of classes I and II).

4. Evaluation of the behaviour factor, 'q'.

The behaviour factor can be calculated if the the design force (V_d) is intentionally set to be equal to the first yield base shear (V_{1y}) :

$$q = \frac{V_{el}}{V_d} = \frac{V_{el}}{V_{1y}} \cdot \frac{V_{1y}}{V_d} = \frac{V_{el}}{V_{1y}}$$
(6.3)

where

 V_{el} is the elastic seismic force obtained from the elastic response spectrum;

 $V_{\rm v}$ is lateral capacity of the structure;

 V_{1y} is lateral force reached at the formation of the first plastic hinge in the structure;

 V_d is lateral force considered in the design process;

The first plastic hinge occurs when the bending moment due to seismic action, plus the bending moment due to the gravity loads become equal to the plastic moment of the element under consideration:

$$M_{pl,Rd} = \lambda \cdot M(E_{Ek}) + M(G + \psi_2 \cdot Q_k)$$
(6.4)

where :

 $M_{pl,Rd}$ is the plastic moment;

 $M(E_{Ek})$ is the moment due to a unit seismic action;

 λ is the load factor;

 $M(G + \psi_2 \cdot Q_k)$ is the moment due to the gravity loads.

5. Determination of the seismic design forces followed by elastic structural analysis (in order to get moment, internal forces and displacements):

$$V_d = \lambda \cdot m \cdot S_d(T_1) \tag{6.5}$$

where λ is the correction factor (0,85), *m* is the mass of the system, T_1 is the fundamental period of vibration of the system and $S_d(T_1)$ is the ordinate of the design response spectrum;

6. P- Δ checks and possible amplification of the seismic design base shear:

$$\theta = \frac{P_{tot} \cdot d_r}{V_{tot} \cdot h} \le 0.10 \tag{6.6}$$

If $0.10 \le \theta \le 0.20$ the second order effects may be approximately taken into account by multiplying the relevant seismic actions effects by the factor $1/(1-\theta)$.

7. Ultimate Limit State (ULS) checks for the final set of seismic forces.

<u>Moment Resisting Frames (Group 1)</u>: to check ULS, all members should satisfy equations (5.5) to (5.12).

Concentric Braced Frames (Group 2)

Braces

As recommend by EC8, braces should satisfy the following of resistance and have their non-dimensional slenderness limited:

$$N_{Ed} \le N_{pl,Rd} \tag{6.7}$$

$$1.3 \le \lambda \le 2.0 \tag{6.8}$$

where

 N_{Ed} is the design axial force;

 $N_{pl,Rd}$ is the design resistance computed as indicated by EC3;~

 $\overline{\lambda}$ is the non-dimensional slenderness.

Beams & Columns

The beams and columns should be checked to remain elastic in order to ensure that dissipative behavior is located in the braces. According to Section 6.7.4 of EC8 the design forces are obtained using the following combination:

$$Ed = E_{d,Gk+0,3Qk} + 1.1 \cdot \gamma_{ov} \cdot \Omega \quad \cdot E_{d,E}$$
(6.9)

where

 γ_{ov} is the overstrength factor which is equal to 1.25;

$$\Omega$$
 is given by $\Omega = \min\left(\frac{N_{pl,rd,i}}{N_{Ed,i}}\right)$.

After computing the beams and columns design forces, as indicated above, equations (5.5) to (5.12) have to be satisfied.

- CEN [2002] *EN1990, Eurocode 0: Basis of structural design,* European Committee for Standardization, Brussels, Belgium.
- CEN [2004] EN1998-1-3, Eurocode 8: Design of structures for earthquake resistance- Part 1: general rules, seismic actions and rules for buildings, European Committee for Standardization, Brussels, Belgium.
- CEN [2005] EN1998-1-1, Eurocode 3: Design of steel structures Part 1: general rules, seismic actions and rules for buildings, European Committee for Standardization, Brussels, Belgium.

APPENDIX- SUMMARY OF THE DESIGN PROCEDURES

1 Selection of the lateral resisting system

Figure 1.1- Torsionally restrained regular structure (structure 1)

Table 1.1-	Sections	obtained	from	Static	Design
------------	----------	----------	------	--------	--------

	COLU	JMNS	BEAMS		
	EXTERNAL INTERNAL I		EXTERNAL	INTERNAL	
FRAME 1&4	HEB140 HEB140		IPE 220	IPE 160	
FRAME 2&3	HEB180 HEB180		RAME 2&3 HEB180 HEB180 IPE 270 IPE		IPE 160
FRAME 5&6	HEB180		IPE	270	

Table 1.2- Adopted Sections (Seismic Design)

	COLU	JMNS	BEAMS		
	EXTERNAL INTERNAL		EXTERNAL	INTERNAL	
FRAME 1&4	HEB180 HEB320		IPE 270	IPE 270	
FRAME 2&3	HEB180 HEB320		IPE 270	IPE 270	
FRAME 5&6	HEB320		IPE	330	

2 Consideration of accidental eccentricities

2.1- Accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)					
Lx(m) 30 Ly(m) 18					
$e_{ax}(m)$	(±) 1.5	$e_{av}(m)$	(±)0.9		

Table 2.2-Center of Mass (CM), Center of Stiffness (CR) and Accidental Eccentricities (ea)

			CASE 1	CASE 3	CASE 3	CASE 4
Coordinates(m)	CM	$CR (w/out e_a)$	ea	e _a	e _a	ea
Xi	0.00	0.00	-1.50	-1.50	1.50	1.50
Vi	0.00	0.00	-0.9	0.9	-0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Without Accide	ntal eccentricities	With Accidental eccentricity(Case 1)		
	Direction yy Direction xx		Direction yy	Direction xx	
T(s)	0.54	0.68	0.55	0.68	
$S_e(m/s^2)$	8.175	6.492	8.026	6.492	
M (ton)	206.51	206.51	206.51	206.51	
V _e (kN)	1688.18	1340.61	1657.49	1340.61	

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.076	0.038	0.045
Direction xx	4.5	0.082	0.041	0.045

5 Evaluation of the behaviour factor. 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1– Estimation of the structure behavior factors in x and y directions (CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6
T(s)		0.55				58
$S_e(m/s^2)$		8.026				92
V ^e (kN)		1657.49			1340	0.61
V _{ei} (kN)	619.93	619.93 293.65 277.34 466.58				677.79
V _y (kN)	839.48				531	.41
q	1.97			2.5	52	

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6
T(s)		0.68				
q		3.00				
$S_d(T)$		4.01.	2.102			
V _d (kN)	278.9	127.44	115.92	174.12	226.88	231.04

Table 5.2– Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis (CASE 1)

6 **P-** Δ checks

Table 6.1- $P-\Delta$ Checks (Case 1)

$P-\Delta$ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	696.38	2025.82	4.50	0.030	0.08	0.05
Direction xx	696.38	2025.82	4.50	0.027	0.07	0.04

7 Ultimate Limit State checks

Equations (5.5) to (5.12) have to be satisfied.

1 Selection of the lateral resisting system

Figure 1.1- Torsionally restrained regular structure (structure 2)

	COLU	JMNS	BEAMS		
	EXTERNAL INTERNAL		EXTERNAL	INTERNAL	
FRAME 1&5	HEB140 HEB180		IPE 220	IPE 160	
FRAME 2&3	HEB140 HEB180		IPE 270	IPE 160	
FRAME 4	HEB140 HEB240		IPE 270	IPE 160	
FRAME 5&6	HEE	3180	IPE270		

Table 1.2- Adopted Sections (Seismic Design)

	COLU	JMNS	BEAMS		
	EXTERNAL INTERNAL		EXTERNAL	INTERNAL	
FRAME 1	HEB240 HEB280		IPE 270	IPE 160	
FRAMES 2&3	HEB140	HEB320	IPE 270	IPE 270	
FRAME 4	HEB140 HEB320		IPE 270	IPE 270	
FRAME 5	HEB140	HEB280	IPE 270	IPE 160	
FRAME 5&6	HEE	3220	IPE300		

2 Consideration of accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)						
Lx(m)	30 Ly(m) 18					
$e_{ax}(m)$	(±) 1.5	$e_{ay}(m)$	(±)0.9			

2.1- Accidental eccentricities

Table 2.2–Center of Mass (CM). Center of Stiffness (CR) and Accidental Eccentricities (ea)

			CASE 1	CASE 3	CASE 3	CASE 4
Coordinates(m)	CM	$CR (w/out e_a)$	e _a	e _a	e _a	ea
x _i	0.00	0.12	-1.62	-1.62	1.62	1.62
yi	0.00	0.00	-0.9	0.9	-0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Without Acciden	tal eccentricities	With Accidental eccentricity(Case 1)		
	Direction yy	Direction yy Direction xx		Direction xx	
T(s)	0.63	0.58	0.65	0.58	
$S_e(m/s^2)$	7.01	7.61	6.79	7.61	
M(ton)	206.51	206.51	206.51	206.51	
Ve(kN)	1447.01	1571.75	1402.49	1571.75	

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

	Table 4.1–	SLS	checks	(CASE	1)
--	------------	-----	--------	-------	----

	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.1000	0.050	0.045
Direction xx	4.5	0.0792	0.038	0.045

5 Evaluation of the behaviour factor, 'q'. followed by spectral analysis (in order to get moment. internal forces and displacements)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6	FRAME 7
T(s)	0.65						0.58
$S_e(m/s^2)$		6.79					7.61
V _e (kN)		1402.49				1571.75	
V _{ei} (kN)	413	413 328 276 248 138				742	766
$V_{y}(kN)$	937.87				528.90		
q	1.50				,	2.97	

Table 5.1- Estimation of the structure behaviour factors in x and y directions (CASE 1)

Table 5.2- Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis

⁽CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6	FRAME 7
T(s)			0.65				0.58
q		2.00				,	3.50
$S^{e}(m/s^{2})$		3.40				,	2.17
V _d (kN)	260.24	158.32	131.72	117.38	71.80	220.06	241.62

6 **P-** Δ checks

Table 6.1- P- Δ Checks (Case 1)

	H_{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	739.46	2025.82	4.50	0.050	0.099	0.06
Direction xx	461.68	2025.82	4.50	0.025	0.050	0.05

7 Ultimate Limit State checks

Equations (5.5) to (5.12) have to be satisfied.

8 SUMMARY OF THE DESIGN PROCEDURE (structures 3&4)

Both structures are **torsionally stiff** since the first two modes of vibration are translation in x and y directions. The design is governed by the seismic SLS checks, particularly in the case of the irregular structure, where it was observed that the only way to reduce the storey drift was to increase frame 1 sections in order to reduce the inherent eccentricity introduced by frame 4.

1 Selection of the lateral resisting system

Figure 1.1- Torsionally restrained regular structure (structure 3)

Table 1.	1-Sections	obtained	from	Static	Design
----------	------------	----------	------	--------	--------

	COLU	JMNS	BEAMS		
	External Internal		External	Internal	
Frames 1&4	HEB 140 HEB 140		IPE 220	IPE 160	
Frames 2&3	HEB 140	HEB 180	IPE 270	IPE 160	
Frames 5&6	HEB 180		IPE	E 300	
Frames7&8	HEB 140	HEB 180	IPE 300	IPE 270	

Table 1.2-	- Adopted	Sections	(Seismic	Design)
------------	-----------	----------	----------	---------

	COLU	JMNS	BEAMS		
	External Internal		External	Internal	
Frames 1&4	HEB 180 HEB 180		IPE 270	IPE 160	
Frames 2&3	HEB 240 HEB 240		IPE 270	IPE 160	
Frames 5&6	HEB 240		IPE 300		
Frames7&8	HEB 180	HEB 240	IPE 300	IPE 270	

2 Consideration of accidental eccentricities

2.1- Accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)						
Lx(m) 30 Ly(m) 18						
$e_{ax}(m)$	(±) 1.5	$e_{av}(m)$	$(\pm) 0.9$			

Table 2.2–Center of Mass (CM). Center of Stiffness (CR) and Accidental Eccentricities (ea)

			CASE 1	CASE 3	CASE 3	CASE 4
Coordinates(m)	CM	CR (w/out e_a)	ea	e _a	e _a	ea
x _i	0.00	0.00	-1.50	-1.50	1.50	1.50
y _i	0.00	0.00	-0.9	0.9	-0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Without Acciden	tal eccentricities	With Accidental eccentricity(Case 1)		
	Direction yy	Direction xx	Direction yy	Direction xx	
T(s)	0.66	0.72	0.67	0.72	
$S_e(m/s^2)$	6.689	6.131	6.589	6.131	
M (ton)	206.51	206.51	206.51	206.51	
V _e (kN)	1381.24	1266.14	1360.62	1266.14	

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.0975	0.049	0.045
Direction xx	4.5	0.044	0.022	0.045

5 Evaluation of the behaviour factor, 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1_Estimation	of the structure h	hehavior factors	in y and y	directions ($(C\Delta SE 1)$
Table 5.1 Estimation	of the structure t	Jenavior ractors	III X and y	uncentons	Cribe I)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6	FRAME 7	FRAME 8
T(s)		0.66				0.72		
$S_e(m/s^2)$		6.689				6.1	31	
V _e (kN)		1381.24			1266.14			
V _{ei} (kN)	225.35	465.27	465.27	225.35	138.68	138.68	494.39	494.39
V_{y} (kN)	881.61					724	4.30	
q		1.57				1.	75	

Table 5.2- Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis

(CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6	FRAME 7	FRAME 8
T(s)	0.67				0.72			
q	2.00				2.50			
$S_d(m/s^2)$	3.294				2.4	453		
V _d (kN)	142.1	241.26	214.7	80.96	59.54	61.36	198.68	224.86

6 **P-** Δ checks

Table 6.1- $P-\Delta$ Checks	(Case	1)
------------------------------	-------	----

$P-\Delta$ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction xx	679.02	2025.82	4.50	0.049	0.097	0.06
Direction yy	544.44	2025.82	4.50	0.036	0.071	0.06

7 Ultimate Limit State checks

Equations (5.5) to (5.12) have to be satisfied.

1 Selection of the lateral resisting system

Figure1.1- Torsionally restrained irregular structure (structure 4)

	COLU	JMNS	BEAMS		
	External Internal		External	Internal	
Frames 1&5	ames 1&5 HEB 140 HEB 140		IPE 220	IPE 160	
Frames 2&3	HEB 140	HEB 180	IPE 270	IPE 160	
Frame 4	HEB 180	HEB 180	IPE 270	IPE 160	
Frames 6&7	HEB 180		IPE	2 300	
Frames8&9 HEB 140		HEB 180	IPE 300	IPE 270	

Table 1.1- Sections obtained from Static Design

Table 1.2- Adopted Sections (Seismic Design-1st option)

	COLUMNS		BE	AMS
	External Internal		External	Internal
Frames 1&5	HEB 180 HEB 180		IPE 270	IPE 160
Frames 2.3&4	HEB 240	HEB 240	IPE 270	IPE 160
Frames 6&7	HEB 240		IPE	E 300
Frames8&9	HEB 180	HEB 240	IPE 300	IPE 270

	COLU	JMNS	BEAMS		
	External Internal		External	Internal	
Frames 1	HEB 180	HEB 240	IPE 270	IPE 160	
Frames 2&3	HEB 240	HEB 240	IPE 270	IPE 160	
Frames 4	HEB 240	HEB 240	IPE 270	IPE 160	
Frames 5	HEB 180	HEB 180			
Frames 6&7	HEB 240		IPE	2 300	
Frames8&9	HEB 180	HEB 240	IPE 300	IPE 270	

Table 1.3- Adopted Sections (Seismic Design- 2nd option)

2 Consideration of accidental eccentricities

2.1- Accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)						
Lx(m)	30	Ly(m)	18			
$e_{ax}(m)$	(±) 1.5	$e_{ay}(m)$	(±)0.9			

Table 2.2- Center of Mass (CM), Center of Stiffness (CR) and Accidental Eccentricities (ea)

		(1 st option)	$(2^{nd} option)$	CASE 1	CASE 3	CASE 3	CASE 4
Coordinates (m)	CM	$CR (w/out e_a)$	$CR (w/out e_a)$	e _a	e _a	e _a	e _a
V.	0.00	1.83	0.73	-2.23	0.77	-2.23	0.77
	0.00	0.00	0.00	-0.9	-0.9	0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

	Without Accid	lental eccentricities	With Accidental eccentricity(Case 1)		
	Direction yy	Direction xx	Direction yy	Direction xx	
T(s)	0.62	0.71	0.60	0.71	
$S_e(m/s^2)$	7.120	6.218	7.358	6.218	
M (ton)	206.51	206.51	206.51	206.51	
V _e (kN)	1470.35	1283.97	1519.36	1283.97	

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.106	0.053	0.045
Direction xx	4.5	0.089	0.045	0.045

Table 4.1– SLS checks (CASE 1- 1st option)

Table 4.2– SLS checks (CASE 1-2nd option)

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.091	0.046	0.045
Direction xx	4.5	0.0863	0.043	0.045

5 Evaluation of the behaviour factor, 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1– Estimation of the structure behaviour factors in x and y directions (CASE 1-2nd option)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6	FRAME 7	FRAME 8	FRAME 9
T(s)			0.60				0	0.71	
Se(m/s2)			7.358				6.	.218	
Ve(kN)			1519.36			1283.97			
Vei(kN)	369.08 399.83 369.08 246.05 135.33					178.22	177.96	448.17	479.62
Vy (kN)	971.57					75	57.12		
q	1.56					1	.70		

Table 5.2- Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis

(CASE 1-2nd option)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	FRAME 5	FRAME 6	FRAME 7	FRAME 8	FRAME 9
T(s)	0.60					().71		
q	2.00					2	2.50		
Sd(T)	3.679					2	.487		
Vd(kN)	208.34	213.66	182.74	116.50	62.40	73.30	74.76	201.04	219.02

6 P- Δ checks

$P-\Delta$ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	845.04	2025.82	4.50	0.045	0.091	0.05
Direction xx	628.25	2025.82	4.50	0.035	0.069	0.05

Table 6.1- P- Δ Checks (Case 1-2nd option)

7 Ultimate Limit State checks

Equations (5.5) to (5.12) have to be satisfied.

8 SUMMARY OF THE DESIGN PROCEDURE (structures 3&4)

The structures 3 and 4 are also **torsionally stiff** since their first two modes of vibration are translational in both directions.

Conversely to structures 1 and 2, structures 3 and 4 are torsionally restrained. For this reason it was possible to decrease the internal columns sections (HEB 320 to HEB 240).

The design was also governed by the serviceability drift limits imposed by EC8. As before, it was observed that the only way to reduce the storey drift it to reduce the introduced accidental (regular structure) or inherent (irregular structure) eccentricities.

In the limit, it would mean to lose regularity criteria, in the case of the regular structure, and eliminate the irregularities (introduced by considering frame 4), in the case of the irregular structure.

The 1^{st} and 2^{nd} options presented for structure 4 illustrate the above mentioned. The reduction of the inherent eccentricity from 1.83 to 0.73 reduces the story drift from 0.53 to 0.46.

STRUCTURE 5- SEISMIC DESIGN (3D)

1 Selection of the lateral resisting system

Figure 1.1- Torsionally unrestrained regular structure (structure 5)

Table 1.1– Sections obtained	from Static Design/	Sections Adopted
------------------------------	---------------------	------------------

	STATIC DESIGN		SEISMIC DESIGN		
	Columns	Beams	Columns	Beams	
Frames 1&2	HEB120	IPE 160	HEB140	IPE 160	
Frames 3&4	HEB120	IPE 330	HEB140	IPE 330	
Braces	C H S 139.7 x	СН S 139.7 х 3.2		x 3.2	

2 Consideration of accidental eccentricities

2.1- Accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)							
Lx(m)	30	Ly(m)	18				
$e_{ax}(m)$	(±) 1.5	$e_{ay}(m)$	(±)0.9				

Table 2.2- Center of Mass (CM), Center of Stiffness (CR) with and without Accidental Eccentricities

			CASE 1	CASE 2	CASE 3	CASE 4
Coordinates(m)	CM	$CR (w/out e_a)$	ea	ea	ea	ea
x _i	0.00	0.00	-1.50	-1.50	1.50	1.50
y _i	0.00	0.00	-0.9	0.9	-0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Without Acciden	tal eccentricities	With Accidental eccentricity(Case 1)		
	Direction yy	Direction xx	Direction yy	Direction xx	
T(s)	0.48	0.42	0.48	0.41	
$S_e(m/s^2)$	8.829	8.829	8.829	8.829	
M (ton)	206.51	206.51	206.51	206.51	
V _e (kN)	1823.23	1823.23	1823.23	1823.23	

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

Table 4.1-	SLS	checks	(CASE	1)
------------	-----	--------	-------	----

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.082	0.041	0.045
Direction xx	4.5	0.050	0.025	0.045

5 Evaluation of the behaviour factor, 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1– Estimation of the structure behavior factors in x and y directions (CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	
T(s)	0.4	18	0.41		
$S_e(m/s^2)$	8.8	33	8.83		
V _e (kN)	1823	3.23	1823.23		
V _{ei} (kN)	1207.78	627.07	760.08 1058.5		
V _{vi} (kN)	488	.80	670.13		
q(i)	3.7	73	2.72		

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	
T(s)	0.4	18	0.41		
q adopt	4.5	50	3.00		
$S_d(T)$	2.2	07	2.9	943	
V _d (kN)	224.22	257.40	313.57	297.13	

Table 5.2– Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis (CASE 1)

6 **P**- Δ checks

Table 6.1- P- Δ Checks (Case 1)

P- Δ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	481.61	2025.82	4.50	0.0223	0.100	0.09
Direction xx	610.70	2025.82	4.50	0.0164	0.049	0.04

7 Ultimate Limit State checks

7.1 Braces design checks

Braces	N _{ed} (kN)	N _{pl.Rd} (kN)	Ω	$\overline{\lambda}$	$\Omega_{ m min}$
Frame 1	-335.09	486.35	1.45	1.829	1.24
Frame 2	-384.67	486.35	1.26	1.829	
Frame 3	-392.63	486.35	1.24	0.000	
Frame 4	-372.05	486.35	1.31	0.000	

Table 7.1- Brace design checks (Case 1)

7.2 Beams & Columns design Checks

The beams and columns should be checked to remain elastic in order to ensure that dissipative behavior is located in the braces. After computing the beams and columns design forces equations (5.5) to (5.12) have to be satisfied.

STRUCTURE 6- SEISMIC DESIGN (3D)

1 Selection of the lateral resisting system

Figure1.1- Torsionally unrestrained irregular structure (structure 6)

	STATIC DESIGN		SEISMIC D	ESIGN		
	Columns	Beams	Columns	Beams		
Frames 1&2	HEB120	IPE 160	HEB140	IPE 160		
Frames 3	HEB120	IPE 200	HEB140	IPE 200		
Frames 4&5	HEB120	IPE 330	HEB140	IPE 330		
Braces 3. 4&5	C H S 139.7	СН S 139.7 x 3.2		x 3.2		
Braces 1&2	CHS139.7	СН S 139 7 х 3 2		СН S 168 3 x 5		

Table 1.1- Sections obtained from Static Design/ Sections Adopted

2 Consideration of accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)					
Lx(m) 30 Ly(m) 18					
$e_{ax}(m)$	(±) 1.5	$e_{av}(m)$	(±)0.9		

Table 2.2- Center of Mass (CM). Center of Stiffness (CR) and Accidental Eccentricities

		$CR (w/out e_a)$	CASE 1	CASE 2	CASE 3	CASE 4
Coordinates(m)	СМ		e _a	e _a	e _a	w/ e _a
Xi	0.00	2.69	-4.19	1.19	-4.19	1.19
y _i	0.00	0.00	-0.9	-0.9	0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Without Acciden	tal eccentricities	With Accidental eccentricity(Case 1)		
	Direction yy	Direction xx	Direction yy	Direction xx	
T(s)	0.35	0.43	0.28	0.43	
$S_e(m/s^2)$	8.83	8.83	8.83	8.83	
M (ton)	206.51	206.51	206.51	206.51	
V _e (kN)	1823.23	1823.23	1823.23	1823.23	

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.070	0.037	0.045
Direction xx	4.5	0.054	0.027	0.045

5 Evaluation of the behaviour factor, 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1-Estimation of the structure behaviour factors in x and y directions (CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 3	FRAME 4
T(s)		0.28	0.4	43	
$S_e(m/s^2)$		8.829	8.	83	
V _e (kN)	1823.23			1823.23	
V _{ei} (kN)	1251.70 586.81 3.23			873.66	946.46
V_{y} (kN)		883.01	749	0.51	
q		2.06	2.4	43	

FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 5 0.28 0.43 T(s) 2.70 2.50 q 3.270 3.270 $S_d(T)$ 373.47 256.33 222.83 363.58 364.72 V_d(kN)

Table 5.2– Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis (CASE 1)

6 **P**- Δ checks

Table 6.1- P- Δ Checks (Case 1)

P- Δ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	852.64	2025.82	4.50	0.0277	0.069	0.04
Direction xx	728.30	2025.82	4.50	0.0199	0.054	0.03

7 Ultimate Limit State checks

7.1 Braces design checks

BRACES	Braces	N _{ed} (kN)	N _{pl.Rd} (kN)	Ω	$\overline{\lambda}$
Frame 1	-558.14	-912.35	1.63	1.227	
Frame 2	-383.09	-912.35	2.38	1.227	
Frame 3	-366.04	-486.35	1.33	1.468	1.06
Frame 4	-455.25	-486.35	1.07	1.829	
Frame 5	-456.67	-486.35	1.06	1.829	

Table 7.1- Brace design checks (Case 1)

7.2 Beams & Columns design Checks

After computing the beams and columns design forces equations (5.5) to (5.12) have to be satisfied.

8 SUMMARY OF THE DESIGN PROCEDURE (structures 5 & 6)

Both structures are **torsionally flexible** since the 1st mode of vibration is rotational.

The beams design was governed by the static serviceability limits states; the columns design was ruled by the criterion that beams and columns must remain elastic during the seismic event in order to ensure that the dissipative behavior is located in the brace; and braces design were governed by the resistance of the sections (frames 1 and 2 braces sections had to be increased comparatively to frames 3.4 and 5).

STRUCTURE 7- SEISMIC DESIGN (3D)

1 Selection of the lateral resisting system

Figure 1.1- Torsionally restrained regular structure (structure 7)

Table 1.1-Section	s obtained	from	Static 1	Design/	Sections	Adopted
-------------------	------------	------	----------	---------	----------	---------

	STATIC DESIGN		SEISMIC DESIGN	
	Columns Beams		Columns	Beams
Frames 1&2	HEB100	IPE 160	HEB140	IPE 160
Frames 3&4	HEB120 IPE 330		HEB120 IPE 330	
Braces	СН S 139.7 x 3.2		СН S 139.7 x 3.2	

2 Consideration of accidental eccentricities

2.1-Accidental	eccentricities
----------------	----------------

ACCIDENTAL ECCENTRICITIES (e _a)				
Lx(m)	30 Ly(m)			
$e_{ax}(m)$	(±) 1.5	$e_{ay}(m)$	(±)0.9	

Table 2.2- Center of Mass (CM), Center of Stiffness (CR) and Accidental Eccentricities

			CASE 1	CASE 2	CASE 3	CASE 4
Coordinates(m)	CM	$CR (w/out e_a)$	e _a	e _a	e _a	ea
x _i	0.00	0.00	-1.50	-1.50	1.50	1.50
y _i	0.00	0.00	-0.9	0.9	-0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Direction yy	Direction xx
T(s)	0.47	0.43
$S_e(m/s^2)$	8.829	8.829
M (ton)	206.51	206.51
V _e (kN)	1823.23	1823.23

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

SLS chekcs	h (m)	dr (m)	dr.v	Limit(m)
Direction yy	4.5	0.055	0.027	0.045
Direction xx	4.5	0.043	0.022	0.045

Table 4.1- SLS checks (CASE 1)

5 Evaluation of the behaviour factor, 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1– Estimation of the structure behaviour factors in x and y directions (CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 4
T(s)	0.4	17	0.43	
Se(m/s2)	8.829		8.83	
V _e (kN)	1823.23		1823.23	
V _{ei} (kN)	975.99 853.99		882.40	937.73
V_{y} (kN)	603.69		756.49	
q	3.02		2.41	

	FRAME 1	FRAME 2	FRAME 3	FRAME 4	
T(s)	0.4	17	0.	43	
q _{adop}	3.5	50	3.00		
$S_d(m/s^2)$	2.5	23	2.9	943	
V _d (kN)	292.58	247.05	299.87	324.12	

Table 5.2– Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis (CASE 1)

6 **P**- Δ checks

Table 6.1- $P-\Delta$ Checks (Case 1)

P- Δ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	539.63	2025.82	4.50	0.0156	0.055	0.05
Direction xx	623.99	2025.82	4.50	0.0143	0.043	0.03

7 Ultimate Limit State checks

7.1 Braces design checks

			č	,	
Braces	N _{ed} (kN)	N _{pl.Rd} (kN)	Ω	$\overline{\lambda}$	$\Omega_{ m min}$
Frame 1	437.25	486.35	1.11	1.631	
Frame 2	369.21	486.35	1.32	1.631	1.11
Frame 3	-375 47	486 35	-1 30	2 032	

-1.20

2.032

Table 7.1- Brace design checks (Case 1)

7.2 Beams & Columns design Checks

Frame 4

-405.84

After computing the beams and columns design forces equations (5.5) to (5.12) have to be satisfied.

486.35

1 Selection of the lateral resisting system

Figure 1.1- Torsionally restrained irregular structure (structure 8)

	STATIC	DESIGN	SEISMIC DESIGN		
	Columns Beams		Columns	Beams	
Frames 1&2	HEB100	IPE 160	HEB140	IPE 160	
Frame 3	HEB120	IPE 200	HEB120	IPE 200	
Frames 4&5	HEB120	IPE 330	HEB120	IPE 330	
Braces	СН S 139.7 x 3.2		C H S 13	9.7 x 3.2	

Table 1.1- Sections obtained from Static Design/ Sections Adopted

2 Consideration of accidental eccentricities

2.1- Accidental eccentricities

ACCIDENTAL ECCENTRICITIES (e _a)					
Lx(m)	30 Ly(m) 18				
$e_{ax}(m)$	(±) 1.5	$e_{av}(m)$	(±)0.9		

Table 2.2- Center of Mass (CM), Center of Stiffness (CR) and Accidental Eccentricities

			CASE 1	CASE 2	CASE 3	CASE 4
Coordinates(m)	СМ	$CR (w/out e_a)$	e _a	ea	e _a	e _a
Xi	0.00	3.63	-5.13	2.13	-5.13	2.13
y _i	0.00	0.00	-0.9	-0.9	0.9	0.9

3 Modal analysis to determine periods of vibration in x and y directions and the elastic seismic forces

	Direction yy	Direction xx	Direction yy	Direction xx
T(s)	0.40	0.43	0.41	0.43
$S_e(m/s^2)$	8.829	8.829	8.829	8.829
M (ton)	206.51	206.51	206.51	206.51
V _e (kN)	1823.23	1823.23	1823.23	1823.23

Table 3.1- Elastic Seismic Forces (with and without accidental eccentricities)

4 Serviceability Limit State checks (drift limits are obtained from the spectral analysis considering q=1.0)

Table 4.1– S	SLS	checks	(CASE	1)
--------------	-----	--------	-------	----

SLS checks	h (m)	dr (m)	dr.v	Limit(m)
	4.5	0.048	0.024	0.045
Direction yy				
	4.5	0.044	0.022	0.045
Direction xx				

5 Evaluation of the behaviour factor, 'q', followed by spectral analysis (in order to get moment. internal forces and displacements)

Table 5.1– Estimation of the structure behaviour factors in x and y directions (CASE 1)

	FRAME 1	FRAME 2	FRAME 3	FRAME 3	FRAME 4
T(s)	0.41			0.4	43
$S_e(m/s^2)$	8.829			8.	83
V _e (kN)	1823.23			182	3.23
V _{ei} (kN)	827.15 478.23 530.69			887.15	936.09
$V_{y}(kN)$	744.39			757	.82
q	2.45			2.4	41

	FRAME 1	FRAME 2	FRAME 3	FRAME 3	FRAME 4	
T(s)		0.41	0.43			
q _{adop}		3.00			3.00	
$S_d(m/s^2)$		2.94			94	
V _d (kN)	301.58	151.14	177.05	309.98	330.20	

Table 5.2– Adopted behavior factors in x and y direction and design forces obtained from the spectral analysis (CASE 1)

6 **P**- Δ checks

Table 6.1- P- Δ Checks (Case 1)

P- Δ checks	H _{ed} (kN)	P _{tot} (kN)	H(m)	$d_{e}(m)$	dr=de*q	θ
Direction yy	629.76	2025.82	4.50	0.0160	0.048	0.03
Direction xx	640.18	2025.82	4.50	0.0146	0.044	0.03

7 Ultimate Limit State checks

7.1 Braces design checks

Braces	N _{ed} (kN)	N _{pl.Rd} (kN)	Ω	$\overline{\lambda}$ $\overline{\lambda}$	$\Omega_{ m min}$
Frame 1	450.71	486.35	1.08	1.631	
Frame 2	225.87	486.35	2.15	1.631	
Frame 3	264.59	486.35	1.84	1.631	1.08
Frame 4	388.13	486.35	1.25	2.032	
Frame 5	413.46	486.35	1.18	2.032	

Table 7.1- Brace design checks (Case 1)

7.2 Beams & Columns design Checks

After computing the beams and columns design forces equations (5.5) to (5.12) have to be satisfied.

8 SUMMARY OF THE DESIGN PROCEDURE (structures 7 &8)

The structures are **torsionally stiff** since the 1^{st} and 2^{nd} modes of vibration are translation in y and x directions, respectively.

The beams design was governed by the static serviceability limits states; the columns design in y direction was ruled by the criterion that beams and columns must remain elastic during the seismic event in order to ensure that the dissipative behavior is located in the brace, while in x direction the sections size was determined by stability checks; braces design was imposed by the non-dimensional slenderness parameter.