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1. Introduction

Over the last years, as the importance of displacements, rather than forces, has become better appreciated,
a growing interested appeared for methods based on displacements, in particular for what regards RC
structures. Several contributions were made towards the development of Displacement Based Design
(DBD) approaches, but it was only in the 1990’s that formal proposals were made to implement the
emerging ideas into formalized design procedures. One of these new design procedures is the Direct
Displacement Based Design, which was developed on the base of Priestley works [1, 2]. The central idea
of the Direct Displacement Based Design (DDBD) procedure is to design structures in order to achieve

displacements corresponding to a given seismic hazard level.

The objective of this study is to apply the Direct Displacement Based Design to a simple case of study, a
reinforced concrete frame building and to assess the applicability of the method and the needed of

develop an automatic design tool [3].

2. Direct Displacement Based Design Method for Reinforced Concrete Frames
The step by step DDBD procedure is listed in the following:

Step 1: Definition of the target displacement shape and amplitude of the MDOF structure on the base of
performance level considerations (material strain or drift limits) and then derive from there the design

displacement A, of the substitute SDOF structure of the MDOF.

Fig.1 presents a simplified model of a multi-storey frame building, where is shown the required variables
in DDBD procedure.
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Figure 1: Simplified model of a multi-storey building

where, J; is the normalised inelastic mode shape, m; are the masses at each significant storey i, m, is the
equivalent mass of the SDOF, H;is the height of each storey, H, are the total height of the building, H, is

the equivalent height and A, is the equivalent SDOF design displacement.



- Displacement Shape

The normalised inelastic mode shape §; of the frame MDOF structure is defined in Ref. [2] and should be

obtained according to the number of stories, n, as:
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The design storey displacements A; are found using the shape vector §;, defined from Eq. (1) or Eq. (2),

scaled with respect to the critical storey displacement A, and to the corresponding mode shape at the
critical storey level J.. According to Ref. [2], the design storey displacements for frame buildings will
normally be governed by drift limits in the lower storey of the building (i.e. in general A=A, and 8.=0,).
Knowing the displacement of the critical storey (4.) and the critical normalised inelastic mode shape (9,),

the design storey displacements of the individual masses are obtained from:

A —w 5(A) 3)
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where, w, is a drift reduction factor to take into account the higher mode effects and is given by,

w, =1.15-0.0034H, <1.0 (H, in m, see Fig.1).

n

- Design Displacement of the equivalent SDOF structure

The equivalent design displacement can be evaluated as:

A, = Z(mlAzl )/§<miAi) “4)

- Equivalent Mass of the SDOF structure

The mass of the substitute structure is given by the following equation:

)
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- Equivalent Height of the SDOF structure

The equivalent height (see Fig.1) of the SDOF substitute structure is given by:

H, = Z(mfAin)/ 2 (miAi) (6)



Step 2: Estimation of the level of equivalent viscous damping & To obtain the equivalent viscous
damping the displacement ductility # must be known. The displacement ductility is the ratio between the
equivalent design displacement and the equivalent yield displacement A, (see Fig.2). The equivalent yield
displacement is estimated according to the considered properties of the structural elements, for example

through the use of approximated equations proposed in Ref. [2], and based on the yield curvature.

- Displacement ductility of the SDOF structure

The SDOF design displacement ductility (see Fig.2) is given by Eq. (7) and is related to the equivalent
yield displacement A,:

_A (7)
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Figure 2: Constitutive law of the equivalent SDOF system

- Equivalent yield displacement

The equivalent yield displacement is given by the following equation:

A, =0H, ®)
where 0, is the yield drift and for reinforced concrete frames is given by:
6,=05¢,L,,/h, ©)

where, ¢, is the yield strain of steel, L;.; is the beam length and /, is the beam section depth.

- Equivalent viscous damping

To take into account the inelastic behaviour of the real structure, hysteretic damping (&) is
combined with elastic damping (&,). Usually, for reinforced concrete structures the elastic damping is
taken equal to 0.05, related to critical damping. The equivalent viscous damping of the substitute

structure for frames could be defined according to Ref. [2] by the following equation:

3



E=¢, +0.565(”‘1) (10)
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Step 3: Determination of the effective period T, of the SDOF structure. The effective period of the SDOF
structure at peak displacement response is found from the design displacement spectrum for the

equivalent viscous damping &, i.e. entering the design displacement of the substitute SDOF structure A,

and determining the effective period 7, (see Fig.3).

The displacement spectra for other different levels of & than 5% can be found from the formulation

defined in Eurocode 8 [4], as:

10
SD,§ =SD,5%( ) (11)
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Figure: 3 Design Displacement Spectrum

Step 4: Derivation of the effective stiffness k., of the substitute structure from its effective mass and
effective period. Then it is possible to obtain the design base shear as the product of the effective stiffness

by the design displacement of the substitute SDOF structure.

- Effective stiffness of the substitute SDOF structure

v - . (12)

- Design base shear force

Vbase = keAd (13)



- P-Aeffects in Direct Displacement-Based Design

As suggested in Ref.[2], for reinforced concrete structures P-A effects should be considered if the stability
index 6, is greater than 0.10, with a maximum value of 0.33. The stability index compares the magnitude
of the P-A effect at expected maximum displacement (4,,,) to the design base moment capacity of the

structure (Mp). The structural stability index is given by:

g, = PBmsc (14)

Substituting in Eq. (14) Mp = OTM and A,,,=A; , where OTM is the overturning moment at the base
given by Eq. (19) and 4, is the design displacement of the substitute SDOF structure. P is the axial force

due to gravity loads.

The design base shear force V. to take into account the P-A effects is given by:

c A (15)

e

V, kA, +

base — MePd

where, k. is the effective stiffness and H, is the equivalent height of the SDOF substitute structure. The C

parameter shall be taken as 0.5 for reinforced concrete buildings.
Therefore, the required base moment capacity is:
M, =K,A,H,+CPA, (16)

After the determination/actualization of the design base shear force, this is distributed between the mass

elements of the MDOF structure as inertia forces.

Step 5: Distribution of the design base shear force V., to the locations of storey mass of the building

(MDOF structure).

The design base shear force is distributed to the storey levels as:

forn<10 F =V M (17)

A 18
forn=10 F,=F +09V, M (18)

ase

m.A.)

i
i=1

where, F; = 0.1V}, at roof level, and F, = 0 at all other storey levels.

Step 6: Evaluation of design moments at potential hinge locations. To this purpose the method of analysis
used is a simplified method based on equilibrium considerations (statically admissible distribution of

internal forces).



Beam Moments

The lateral seismic forces F; obtained with Eq. (17) or Eq. (18) produce in each of the columns axial
forces (compression or tension) and column-base moments (M,;). The seismic axial forces induced in
each of the columns (7 for tension or C for compression) by the seismic beams shears are the sum of

seismic beam shears in each vertical alignment (3, ). In Fig.4 is shown a typical distribution of seismic

lateral forces F; and the corresponding internal forces induced in a frame building. Considering the

equilibrium at base level, the total overturning moment is given by:

OTM = Y FH, (19)

i=I
Knowing that equilibrium should be assured between internal and external forces, the total overturning

moment at the base of the structure, hence:

OTM = iMl,j +"2
=

n
7=

e

where, M,; are the column-base moments (m is the number of columns) and L;.; is the length of each span.
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Figure 4: Seismic Moments from DDBD [adapted from Ref. [2]]

From Fig.4 and considering only a parcel of OTM regarding the seismic axial forces (OTM*), the

corresponding overturning moment is given by:

OTM* = 2( Vs ) xL,, = EVBU xL, +2 Vo, XL, +2 Vi Ly +2 Vipar XLy 21
AN im = = i=



where, Vg i, Vgoi, Vasi and Vpy; are the seismic beam shears at level i for bay 1 to 4, respectively. The
seismic beam shears for each span is constant, thus, Vg;.;; = 2Mp;;;/L;.;, where Mp;.;; is beam moment of

each span at the storey i.

Replacing the seismic beam shears in Eq. (21), the overturning moment OTM* will be:

OTM * = 22 (EMBJ‘“ ) (22)

According to the example of Fig.4, OTM* is thus:

OTM* = 22 (MBl,i + My, + My, + MB4,i) *)

Considering a relationship between beam moments as M ,,, = aM ,,,» M ,,, = M, and M, . = ¥M

and replacing in turn in Eq. (23), the beam moments corresponding to the first span L, are given by:

OTM *
EMBII (24)
1+a+/a’+;()

51, » the seismic beam shears for the first span is:

If a, B and y are replaced in Eq. (24) and then 2 M

" 22M51,f * EMBIJ
A= =OTM & (25)

Bl
o L L n n n n
: ZMBl.i+2MBZ,i+2MB3,1'+2MB4,1'

Therefore, for each span the seismic beam shears due to OTM* are given by:

=1 1

n

M, .
_ 2 Bj-1,i OTM* (26)
Z Bji-li — .
B 2 EMB] 1i 171

Combining Eq. (19) and Eq. (20) and replacing the parcel of seismic axial forces due to OTM* given by

Eq. (26), the total sum of seismic axial forces is defined as:

ZMB]]L

. 27
2 = (EFH - J/Lj_1 27
- 2 Mb’jlt

All distribution of the total required beam shear that assures Eq. (27) will result in a statically admissible
equilibrium solution and can be chosen on the base of engineering judgment. However, in Ref. [2] it is
suggested that the distribution of the total beam shear force could be done in proportion to the storey

shears in the level below the beam under consideration as depicted in Fig.5.
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Figure 5: Storey shear forces

The distribution of the total beam shear force is thus:

: Vi (28)
VBj—l,i = 2 VBj—l.i'%
" VS,i
where the storey shear forces at level i, Vs, are given by:
Vs, = Z F, 29)

After the individual beam shear forces have been calculated, the beam design moments at the column

centrelines are obtained by the following equation:

MBlj—l,i + MBrj—l,i = VBj—l,i L (30)

j-1

where, Mp;;.;; and Mp, ;.;; are the beam moments at the column centrelines at the left and right end of the

beam, respectively.

Column Moments

Knowing that structural analysis based on equilibrium considerations is actually an approximation of the
real distribution, the designer gets some freedom in choosing distribution of the total storey shear force
between the columns and the design moment at the column-base of first storey, provided the equilibrium

is maintained between internal and external forces.

The total storey shear force given by Eq. (29) is shared between the columns. This could be done
according to the following ratio: 1 for external columns and 2 for internal columns, as suggested in Ref.
[2]; from the shear forces at the base of each column Vi, it is then possible to obtain the column-base

moments at the base and top of the columns between the ground storey and 1% storey.

According to Ref. [2], for one-way frames the contra-flexure point for the 1% storey columns-base
moment Mcy; , could be considered around 60% of the height of the column H; (see Fig.6). Therefore, the

column-base moments at the bottom and top of the 1% storey are given by:

Moy = 0.6V Hy (1)



Mo, =04Veo - Hy (32)

Once known the column-base moments of the first storey and the beam moments at each it is then
possible to obtain the column moments distribution in height, considering the equilibrium from the 1*

storey nodes and successively until the top level is reached, as illustrated in Fig.6.

2" storey
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Figure 6: Determination of Column Moments from Considerations of Joint Equilibrium [adapted from,

Ref. [2]].
Step 7: Capacity Design Requirements for Frames.

Capacity design rules must then be implemented to ensure that plastic hinges cannot develop at

unintended locations and, that shear failure cannot occur for the desired mechanism (see Fig.7).

Figure 7: Beam-Sway Mechanism for moment resisting frame

For this purpose column flexural strengths at locations other than at the base or top and shear strengths at
plastic hinge location must be amplified all through the structure. The relationship between design

strength and basic strengths are given by the following equation:

¢Sy =9'w,S, (33)



where, Sp is the design strength defined according to the capacity design rules, ¢s is a strength reduction
factor relating dependable and design strengths of the action (¢s= 1 should be adopted for flexural design
of plastic hinges and ¢5 < 1 for other actions and locations), Sg is the basic strength, i.e. the value
corresponding to the design lateral force distribution determined from the DDBD method, ¢’ is an
overstrenght factor to account for the overcapacity at the plastic hinges and «y is the amplification due to
higher mode effects. To apply capacity design rules an approximate method, as proposed in Ref. [2], is

used.
Beam Flexure:

According to the desired inelastic mode, depicted in Fig.7, the plastic hinges should form at beam ends.
For these regions the flexural design of plastic hinges is based on the larger of the moments due to
factored gravity loads or corresponding to the design lateral forces from DDBD procedure (seismic

moments).

For the regions between the beam plastic hinges, design moments are found from the combination of
reduced gravity loads applicable for the seismic design combination, and overstrenght moment capacity at
the beam hinges. Therefore, at a distance x from the left support, the total moment is given by:

0 0.2

L
M, =Mg,,+(Mg‘,,_Mg,,)x%+W§ x_% (34)

where L is the beam span, Mz, (=¢"(x)M3;;) and M’z (=¢”(x)M3;,) are the moments at left and right of
column centrelines, respectively, and w¢’ is the gravity load (dead and live) constant along the beam and
amplified of 30% of seismic gravity moments are considered to account for elastic vertical response of
the beam to vertical ground accelerations. Eq. (34) is defined taken into account that the beam moments
cannot exceed Mz, the overstrenght values at the beam plastic hinges; thus the design moments are

defined by adding the gravity moments for a simple supported beam to the seismic moments.
Beam Shears:

The seismic beam shears corresponding to the plastic hinges locations are constant along the beam. As
recommended in Ref. [2] the design shear force along the beam, should considerer the effects of beam
vertical response (combined seismic shears with reduced gravity shears applicable for seismic load
combinations), therefore:

by, -m3,) | wil

V. = T 2"7_1 - Wex (35)

-1
Column Flexure:

Column end moments, other than at the base or top, and shears forces are amplified for both potential
overstrenght capacity at beam plastic hinges (material strengths exceed the design values) and dynamic

amplification resulting for higher mode effects, which are not considered in the structural analysis.
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The required column flexural strength according to DDBD capacity design rules is given by:
¢ My =¢'0,M, (36)
where, ¢yis the strength reduction factor;
My is the design column moments;
¢" is the overstrenght factor;
wyis the dynamic amplification factor, defined in the following;
M is the column moments resulting from lateral seismic forces (see Fig.4).

The overstrenght factor ¢ is the ratio of overstrenght moment capacity to required capacity of the plastic
hinges, as referred previously and could be obtained by moment-curvature analysis or using a default
value. The effort to obtain overstrenght factors by moment-curvature analysis maybe excessive for some
structures and as suggested in Ref. [2] a default value should be considered. It is possible to adopt two
values for different situations, if the design is based on a strain-hardening model for the flexural

reinforcement ¢0 is taken as 1.25, if not, it is recommended a value of 1.60.

The dynamic moment amplification factor wy is height and ductility dependent, as shown in Fig.8. From

the first storey until % of the total height, for one-way frames wy. is given by:
w,, =1.15+0.13(u - 1) (37)

where, 1’ is the reduced ductility corresponding to the average overstrenght capacity of the beam hinges.

The value at the base of the bottom storey and at the top should be taken as ¢ . =1.0, where hinging at

the column is acceptable, according with the desirable inelastic mode referred previously.

(Df"t
Y Y T
O.iSH
<4+ O . —P
H
0.75H
v

Figure 8: Dynamic amplification of frame column moments [adapted from, Ref. [2]]
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Column Design Shear Forces:

According to Ref. [2] it has been stated that the dynamic amplification factor for column shear should be

obtained by a constant offset of shear demand above design-force envelope with height, given by:

MY+ M2
PV =@V, + 01UV, < WTM 38)
Ci

where,

Vg is the shear demands from lateral seismic forces;
VE pase 18 the Vi value at the base of the column;

u is the displacement ductility;

Mc; and Mc;;’ are the moments at the top and bottom of the column, respectively, corresponding to

development of plastic hinging;

H_; is the clear height of the column.
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3. Case of study- Reinforced Concrete Frame

The DDBD procedure is applied [5, 6] to the interior frame of the four-storey reinforced concrete
structure plotted as section A-A of Fig.9, with a global geometry (height and spans as well as beams and
columns cross-section dimensions) defined in the context of the “Cooperative Research on the Seismic
Response of the Reinforced Concrete Structures” [7]. The structure is irregular in terms of spans and the
lateral resistance is provided by one-way frame action. The slab thickness is equal to 0.15 m. The
reinforced concrete frames are made with concrete C25/30 (f.;,= 16.7 MPa). The reinforcement steel is a
classical Tempcore steel B500 (f,=500 MPa). In addition to the self-weight of the beams and the slab, due
to floor finishing and partitions a distributed dead load of 2 kN/m? is considered, as well as an imposed

live load with nominal value of 2 kN/m”’.

10.00m —

6.00m 4.00m

3.00m

)

>

Direction of
analysis

. 300m

10.00m

. 300m

_3275m

Plan Section A-A

Note:

Column size: (0.4x0.4) all
(0.45x0.45) central column interior frame
Beam size: (.30x.45) all

Figure 9: General Layout [adapted from, Ref. [7]]

In a first stage, the frame building is designed according to the Direct Displacement Based Design
procedure considering being located in Continental Portugal (Algarve) seismic zone 1.1, as an ordinary
building, class of importance II. The seismic action was defined according to Eurocode 8 [4] and
Portuguese National Annex [8] with the elastic acceleration response spectrum S, for subsoil class D. The
value of peak ground acceleration a, used in the definition of the response spectrum is 0.35g. The elastic

displacement spectrum Sp, used for DDBD, shown in Fig.10, is the one defined in Eurocode 8 by:

2

S,.(T) =S, (T)[;r] (39)

04

0,35
03

— 0,25

Sd [m]

0,15
0.1

0,05

0.0 1.0 2.0 3.0 4.0
T [sec]

Figure 10: Design Displacement Spectrum
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The second stage regards the application of the DDBD procedure when the displacement capacity
exceeds the spectral demand. For this purpose the DDBD procedure was applied again to the same case of
study but considering the building located in Continental Portugal (Lisbon) seismic zone 1.3, for a design

ground acceleration a, of 0.27g.

The seismic performance of the designed structure for peak ground acceleration (a,) of 0.35g was assess

by means of non-linear dynamic analyses and it is presented in Section 3.3.

3.1. Direct Displacement Based Design for a peak ground Acceleration of 0.35g

In this section is presented the frame design according to DDBD procedure and for a, equal to 0.35g. The

step-by-step procedure defined in section 2 is following in this case study.

Step 1: Definition of the design storey displacement, design displacement of the SDOF structure,

equivalent mass and equivalent height

The normalised inelastic mode shape of the MDOF frame structure for this case of study is given by Eq.
(1), with n=4. According to Ref. [2], for frame buildings the design displacement of the substitute SDOF
structure will usually be governed by a specified drift limit in the lower storeys of the building. This
shape implies that the maximum drift occurs between the ground and first storey. For design purpose and
according Ref. [2] the drift limit was considered as 2.5 %. The critical design storey displacement for the

first storey (H;= 3.275 m) is thus A, = A, =0.025x3.275=0.0818m and the critical normalised inelastic

mode shape J. = 6= 0.267.

The design storey displacement profile is found from Eq. (3), reproduced herein by convenience:

A, =w, A =1.0x@5[ =0.3076, (40)
s, 0.267

1

where, w, is taken as 1.0.

Table 1 presents the calculations to obtain the design displacement of the equivalent SDOF structure and

equivalent height.

Table 1: Calculations to obtain design displacement of the SDOF structure

Storey, i Height, H; (m) Mass, m; (ton) o; A; (m) m; A; m; Aiz m; A H;
4 12.275 46.59 1.00 0.307 14.30 4.39 175.51
3 9.275 46.59 0.76 0.232 10.80 2.51 100.21
2 6.275 46.59 0.51 0.157 7.31 1.15 45.87
1 3.275 46.95 0.27 0.082 3.84 0.31 12.59
> 36.26 8.35 334.18

In Fig.11 is depicted the design storey displacements profile according to the selected target drift limit,

where the top target displacement Ay, (roof displacement) is equal to 0.307m.

14
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Figure 11: Design storey displacements

From Eq. (4) to Eq. (6) and from the values presented in Table 1 it is possible to derive the design
displacement A,, the equivalent mass m, and equivalent height H, of the SDOF structure. Therefore, the
design displacement of the SDOF structure is 0.23m, the equivalent mass is 157.34 tonne and the
equivalent height is 9.217m (75.1% of building height).

Step 2: Estimation of the level of equivalent viscous damping
The design displacement ductility is given by Eq. (7), reproduced herein by convenience:

Ay (41)

The equivalent yield displacement is the product between the yield rotation (see Eq. (9)) and the
equivalent height of the SDOF structure. In this case of study, with beam depths for spans 1 and 2 4;; =

hy>= 450 mm, the yield rotation 6, is given by:

0, =05xe¢ L (42)

yhi y h )

bl,i

L.
6, =05xe, — (43)

b2,i

The yield strain is thus:

£, = fye/ES =1.1x500/200000 = 0.00275 (44)

where the design yield strength of steel is f,. = 1./ f;, according to the recommendations in Ref. [2] for

design material strengths for plastic hinge regions.

The equivalent yield displacement is given by:

MO+ Mo, 001840012

Li7yli 2,i7y2,i

! M, +M,,

x9.217=0.141m (45)

A

e
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The M, ; and M,; are the contribution from both bays, and the considered relationship between them is

Ml,i/ M2,i = ]

Replacing in Eq. (41) the design displacement of the SDOF structure and the equivalent yield
displacement, the SDOF system design displacement ductility is u=1.64.

The equivalent viscous damping of the SDOF structure was obtained by Eq. (10), reproduced herein by

convenience:

£=0.05+ 0.565(”'1) =11.99% (46)
ur

Step 3: Determination of the effective period

The effective period at peak displacement response is found from the design displacement spectrum
defined for the equivalent viscous damping of £=11.99% through Eq. (11) and Eq. (39), entering the
design displacement of the equivalent SDOF structure A; and determining the effective period T, (see

Fig.12).

AC.5%=0'35m

Ac11.99%=0.27m

Displacement [m]

T.=1.69 sec

0,0 1.0 2,0 3.0 4,0

Period [sec]

Figure 12: Design Displacement Spectrum

The effective period of the SDOF structure is T, = 1.69sec.

Step 4: Derivation of the effective stiffness and design base shear force

Knowing the effective period it is possible to derive the effective stiffness and the design base shear force
of the SDOF structure from Eq. (12) and Eq. (13), respectively. The effective stiffness of the SDOF
structure is k, = 2164.30kN / mand the design base shear force is Vo = 498.70kN -

Table 2 presents a summary of the results obtained previously.
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Table 2: Results of DDBD in terms of displacement, equivalent yield displacement, ductility, effective

mass, effective period and design base shear force

Atarget (m) Ad (m) AV (m) u me (torme) g (%) Te (S) Vbase (kN)
0.307 0.230 | 0.141 | 1.64 157.34 11.99 | 1.69 498.70

Step 5: Distribution of the design base shear force

The next step of the DDBD procedure involves the distribution of the design base shear force obtained for
the SDOF structure in the real structure (MDOF structure), in a variation of the equivalent lateral force-
based. The distribution of the design base shear through the real structure was obtained by Eq. (17) and

the values presented in Table 3.

Step 6: Design actions for MDOF Structure

The real structure is then analyzed under these forces (defined in step 5) and then the design moments are

obtained.
Beam Moments

Table 3 shows the calculations to obtain the distribution of the design base shear through the real
structures, the value of column shear forces in each alignment (shared between the exterior and interior
columns in proportion 1:2 as suggested in Ref. [2]). Storey shear forces Vg obtained from Eq. (29) are
defined by summing the storey shear forces above the storey (see Fig.5). The last column of Table 3

presents the overturning moment OTM given by Eq. (20).

Table 3: Calculations

T Height, Ve Ve Ve, oTM
Storey, i | e | md | FON) | | cols vy | cot3 gy | 7 O | aum)
4 | 12275 | 1430 | 19669 | 49.17 98.34 49.17 196.69 0
3 9275 | 10.80 | 148.62 | 37.15 7431 37.15 34530 | 590.06

2 6275 | 731 | 10055 | 2514 5027 25.14 44585 | 1625.96
] 3275 | 384 | 5288 1322 26.44 13.22 49873 | 2963.49
0 0 0.00 0.00 0.00 4596.82
Sum 3626 | 498.73 | 124.68 24936 12468 | 148656
- P-Aeffects

According to Eq. (14) the stability index 6,for this example is 0.094, therefore there is no need to consider
P-A effects, because 6,< 0.10.

Thus, the value of the design base shear force V. to use in DDBD procedure is 498.73kN and the values

presented in Table 3 are used in further calculations.
Based on Eq. (31) the total resisting moment provided at the column base is thus:

=498.7x0.6x3.275 = 980.0kNm (= 21.3% OTM) 47)

ase

Y M, =0.6HY,
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According to Eq. (27), beam seismic shears corresponding to design lateral forces, admitting a

relationship between beam moments Mp; /Mp, =1, for span 1 and 2, respectively, are given by:

2 Vs = %(4596.8 -980.0)/6 =301.4kN (48)

2 Vs = %(4596.8 ~980.0)/4 = 452.1kN (49)

These forces are distributed to the beams in proportion to the storey shears directly below the beams

considered according to Eq. (28) and Eq. (29).
Vi, =301.4xV, /1486.56 = 0.203V, (50)
Vi, = 452.1xV, /1486.56 = 0.304V (51)

The resulting seismic beam shears for each span is presented in Table 4.

Table 4: Calculations for seismic beam shears

Storey, i VB] i (kN) Vggi (kN)
4 39,90 59,80
3 70,00 105,00
2 90,40 135,60
1 101,10 151,70

The beam design moments at the column centrelines are given by Eq. (30) and at column faces by:

M =V

Bj-Li

bt (L, -n)2 (52)

In Tables 5 and 6 are presented the values of the seismic design beam moments at the centreline and at

the column face, respectively.

Table 5: Beam seismic moments at the centreline (ignoring gravity loads)

Span 1 (L;=6m) Span 2 (L,=4m)
Storey, i MB] il (kNm) MBI ir (kNm) M32 il (kNm) M52 ir (kNm)
4 119.63 119.63 119.63 119.63
3 210.03 210.03 210.03 210.03
2 271.19 271.19 271.19 271.19
1 303.35 303.35 303.35 303.35

Table 6: Beam seismic moments at the face of the column (ignoring gravity loads)

Span 1 (L;=6m) Span 2 (L,=4m)
Storey, i MB] il (kNm) MBI ir (kNm) M32 il (kNm) M52 ir (kNm)
4 111.66 -110.66 106.18 -107.67
3 196.03 -194.28 186.40 -189.03
2 253.11 -250.85 240.68 -244.07
1 283.13 -280.60 269.23 -273.02

According to Ref. [2] the flexural design of the beam plastic hinges is based on moments due to factored

gravity loads or seismic moments corresponding to the design lateral forces (seismic case). Both values
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should be compared and the larger should be adopted for the design. Therefore, it is presented the
calculations for these two cases. The factored gravity moments were obtained considered three load cases:
1) the dead and live loads applied to both spans at the same time, 2) and 3) considering alternate live

loads acting in the spans. Fig.13 shows the larger beam moment from these three combinations.

-153.38 21252, -12803 (oo
129.60 4635

-191.91 205.11 194.06 87.12
114.96 iy

-184.85 207.73 4102.23 -80.31
114.96 00

-175.07 212.31 4112.56 70,50
118.32 47.73

Figure 13: Beam moment distribution due to factored gravity loads [units in kKNm]

In Table 7 is presented the larger beam factored gravity moments for the three combinations.

Table 7: Beam moments due to factored-gravity loads [units in kNm]

Storey, i Span 1 Span 2
’ left end mid span right end left end mid span right end
4 153.38 129.57 212.52 128.03 46.55 59.82
3 191.91 114.96 205.11 94.06 47.24 87.12
2 184.85 114.96 207.73 102.23 47.00 80.31
1 175.07 118.32 212.31 112.56 46.73 70.50

The beam ends (plastic hinge locations) should be designed for the larger of the moments presented in

Table 6 and 7, respectively. In Table 8 is shown the design beam moments for plastic hinges locations;

the moments bold marked is due to factored gravity loads.

Table 8: Design beam moments [units in kNm]

Storey, i Span 1 Span 2
’ leftend | right end left end right end
4 153.38 212,52 128.03 -107.67
3 196.03 205.11 186.40 -189.03
2 253.11 250.85 240.68 -244.07
1 283.13 280.60 269.23 -273.02
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Column moments

The column moments presented in Table 9 corresponds to the design lateral forces and they were

obtained by equilibrium considerations as described previously in section 2.

Table 9: Column moments [units in kNm]

Storey, i Col 1 Col 2 Col 3

4 Top 119.63 | 239.30 | 119.63
bottom | -27.90 | -55.80 | -27.90

3 Top 182.15 | 364.30 | 182.15
bottom | -76.82 | -153.64 | -76.82

) Top 194.40 | 388.72 | 194.40

bottom | -140.02 | -280.03 | -140.02
Top 163.33 | 326.70 | 163.33
bottom | -245.00 | -490.00 | -245.00

Step 7: Capacity design requirements for frames
In the following it is presented the application of the capacity design rules.
Beam Flexure

In DDBD procedure recommendations [2] the material design strengths for design locations of intended
plastic hinges, for concrete and reinforcement should be f7..=1.3f"; and f,. =1.1f,, respectively. Where, /.
is the specified (28 days) concrete compression strength, /., is the expected compression strength of
DDBD, f°, is the specified minimum characteristic yield strength of steel and f. is the expected yield
strength of steel for DDBD.

Thus, for a concrete C25/30 and reinforcement steel B500 the following values will apply:

* Concrete compression

f. =13x25=32.5MPa (53)
Lo (7. =1500)
£, = - IMPa  (y, =1.5[10] (54)
£ =0307" " =3MPa 55)
¢ Steel reinforcement

f,. =1.1x500 = 550MPa (56)
S

Sy =" =4785MPa (y, =1.15[10]) (57)
Vs

The required longitudinal reinforcement for beams ends is shown in Table 10. The longitudinal

reinforcement was obtained for simple flexure; the values of Table 8 are reproduced for convenience.
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Table 10: Longitudinal reinforcement for beam plastic hinges (tension zone)

Design details:

b=0.30m; d=0.42m b=width; d=effective depth
Storey, i | Location | M,, (kNm) u » Aycm?) ¢ | Agrovidealcm®) | p (%)
| left end 283.13 0.247 | 0.290 | 16.60 | 9416 18.10 1.44
rightend |  280.60 0.245 | 0287 | 1638 | 9416 18.10 1.44
5 left end 253.11 0.221 | 0.254 | 14.50 | 8¢16 16.08 1.28
Span 1 rightend |  250.85 0219 | 0251 | 1434 | 8¢16 16.08 1.28
3 left end 196.03 0.171 | 0.189 | 10.80 | 6¢16 12.06 0.96
rightend |  205.11 0.178 | 0.200 9.95 6916 12.06 0.96
A left end 153.38 0.134 | 0.145 8.30 6916 12.06 0.96
rightend | 212.52 0.185 | 0.207 | 1030 | 6¢16 12.06 0.96
| left end 269.23 0.235 | 0273 | 1557 | 8¢16 16.08 1.28
rightend | 273.02 0.238 | 0.277 | 15.83 8916 16.08 1.28
5 left end 240.68 0.210 | 0239 | 13.64 | 8¢16 16.08 1.28
Span 2 rightend | 244.07 0213 | 0243 | 1390 | 8¢16 16.08 1.28
3 left end 186.40 0.163 | 0.179 | 1022 | 6¢16 12.06 0.96
right end 189.03 0.165 | 0.181 | 10.40 | 6¢16 12.06 0.96
A left end 128.03 0.112 | 0.119 6.80 6916 12.06 0.96
right end 107.67 0.094 | 0.100 5.70 6916 12.06 0.96

The reinforcement values for beams were obtained considering the requests specified in Eurocode 8 [4]

for Ductility Class Medium (DCM) structures at plastic hinges locations. To verify the local ductility

conditions according to ECS, the following requirements must be fulfilled:

The value of the curvature ductility factor u, shall be at least equal to:
ty=2q,-1if T =T (58)

uy=1+2(q, -1 if T <T; (59)

in this case of study, u, =2¢,-1=2x3-1=5 (%=3)
In the compression zone, reinforcement should be at least half of the reinforcement provided in
the tension, in addition to any compression reinforcement needed for the ULS verification of the
beam in the seismic design situation.
The reinforcement ratio of the tension zone p does not exceed a value p,,., equal to:

0.0018x 21.7x 10’

Lo +M.& =p'+ T = 0'+0.68% (60)
Uy Sra 5%0.0024x478.5%10

where, o’ is the reinforcement ratio of the compression zone and ¢ ,; = 0.0024

For this case of study the reinforcement of the compression zone will be equal to the reinforcement of the

tension zone.

Through the entire length of a primary seismic beam the reinforcement ratio of the tension zone p shall be

not less than the following minimum value:
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P =0.5x@=0.5x§=0.30% 61)

Yk

Table 11: Reinforcement ratios for beam plastic hinges

StOI’Cy, i Location P (%) p’ (%) Prmax (%) Prmin (%)

| left end 1.44 1.44 2.12 0.30

right end 1.44 1.44 2.12 0.30

) left end 1.28 1.28 1.96 0.30

Span 1 right end 1.28 1.28 1.96 0.30
3 left end 0.96 0.96 1.64 0.30

right end 0.96 0.96 1.64 0.30

4 left end 0.96 0.96 1.64 0.30

right end 0.96 0.96 1.64 0.30

| left end 1.28 1.28 1.96 0.30

right end 1.28 1.28 1.96 0.30

) left end 1.28 1.28 1.96 0.30

Span 2 right end 1.28 1.28 1.96 0.30
3 left end 0.96 0.96 1.64 0.30

right end 0.96 0.96 1.64 0.30

4 left end 0.96 0.96 1.64 0.30

right end 0.96 0.96 1.64 0.30

According to Table 11 the local ductility requirements in the critical regions are fulfilled.

The maximum diameter of longitudinal beam bars crossing a beam-column connection should be set by
an upper limit of the diameter of the longitudinal bars of the beam, d;;, that pass through interior beam-

column joints or are anchored at exterior ones (to prevent bond failure), as:

* In interior beam-column joints:

d, 15f,, 1+0.8v,
vl ' (62
e Yrala 14075k, f/
Pina
¢ In exterior beam-column joints:
G < %(1 +0.8v,)
h, Vralt, vd (63)
Vra =1
for DCM
{kd =0.75
_ N ED . . . . . . .
V= AL Ngp is the axial column force (from seismic design situation)
cJ cd

Therefore, the diameter of the longitudinal bars of the beams for column alignment 1 is 19.83mm, for
column alignment 2, 17.51mm and for column alignment 3, 22.43mm. According to this requirement the
maximum diameter of longitudinal beam bars shall be limited to dj; = 16mm. From Table 11 it could be

stated that these requirements are met.
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The design beam moments at mid span due to seismic loads are given in Table 12 and the correspondent
beam longitudinal reinforcement at Table 13. These are obtained from the combination of reduced gravity
loads applicable for the design seismic combination, and overstrenght moment capacity at beam hinge
location, according to Eq. (34). The overstrenght factor ¢’ is considered equal to 1.25. The design material

strengths used are the characteristic material strengths, without amplification.

Table 12: Design beam moments at mid span [units in kNm]

Storey, i Span 1 Span 2
4 216.16 214.60
3 216.63 213.89
2 216.95 213.42
1 217.11 213.16

Table 13: Beam longitudinal reinforcement for mid span

Design details:

Concrete C25/30 b=0.30m; d=0.42m
Steel: A500 NR b=width; d= effective depth
StOI‘Cy, [ Mrd (kNm) u w AS(sz) ¢ Asprovided(cmz) P (%)
1 217.11 0.246 | 0.288 | 13.96 | 7¢16 14.07 1.12
Span 1 2 216.95 0.245 | 0.288 | 13.96 | 7¢16 14.07 1.12
3 216.63 0.245 | 0.288 | 13.96 | 7¢16 14.07 1.12
4 216.16 0.244 | 0.287 | 13.88 | 7¢16 14.07 1.12
1 213.16 0.241 | 0.282 | 13.63 | 7¢16 14.07 1.12
Span 2 2 213.42 0.241 | 0.282 | 13.63 | 7¢16 14.07 1.12
3 213.89 0.242 | 0.283 | 13.70 | 7¢16 14.07 1.12
4 214.60 0.243 | 0.284 | 13.75 | 7¢16 14.07 1.12

Column Flexure

The required column flexural strength according to DDBD capacity design rules is given by Eq. (36),

reproduced herein by convenience.
oMy =¢'0 M, (64)
¢” is the overstrenght factor considered as 1.25;
wris the dynamic amplification factor - Eq. (37);
M is the column moments resulting from design forces (given in Table 9);
¢ris the strength reduction factor considered as 0.9.

The design column moments and axial forces are shown in Table 14 and 15, respectively. Fig.14 presents

a scheme of the design column moments.
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Table 14: Design column moments [units in kNm]

Storey,i | Location | Col 1 Col 2 Col 3
4 Top 1 166.15 | 332.31 166.15
bottom 1 -45.92 -91.84 -45.92
3 Top 1.190 | 300.02 | 600.03 | 300.02
bottom | 1.190 | -126.99 | -253.98 | -126.99
) Top 1.186 | 321.28 | 642.56 | 321.28
bottom | 1.186 | -231.45 | -462.90 | -231.45
1 Top 1 269.99 | 539.97 | 269.99
bottom 1 -306.24 | -612.50 | -306.24
166.15 33231 166.15
-91.84 -45.92
4592 —poos Zoos 300.02
-127.00 -253.98 -127.00 32128
32128 .56
-462.90 23145
23145 7000 S 270.00
30624/ | 61250 | 30624 / |

Figure 14: Design column moments distribution [units in kNm]

Table 15: Axial forces in columns [units in kN]

Storey,i | Location | Col 1 Col 2 Col 3
4 Top -99.90 | -213.03 | -153.00
bottom | -99.90 | -213.03 | -153.00
3 Top -169.68 | -410.99 | -351.20
bottom | -169.68 | -410.99 | -351.20
) Top -219.06 | -598.77 | -579.98
bottom | -219.06 | -598.77 | -579.98
. Top -258.81 | -782.97 | -825.56
bottom | -258.81 | -782.97 | -825.56

The required longitudinal reinforcement for the rectangular column sections was obtained considering
composed bending and it is presented in Table 16. The required longitudinal reinforcement was obtained
using simplified equations for rectangular cross sections with symmetric reinforcement [9]. The recover

rebar was considered as 3 cm.

The design material design strengths used are the characteristic ones, without amplification, except for the

column base, where it is expected the formation of plastic hinges (beam-sway mechanism).
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Table 16: Longitudinal reinforcement bars /face

Design details:

Concrete C25/30 exterior col. b= 0.40m;h=0.40m
Steel: AS00 NR interior col. b= 0.45m;h=0.45m
Storey, i Col 1 Col 2 Col 3
4 3¢25 3¢32 3¢25
(14.73cm?) | (24.13cm?) | (14.73cm?)
3 4425 4432 4425
(19.63cm?) | (32.17cm?) | (19.63cm?)
5 4425 4¢32 4425
(19.63cm?) | (32.17cm?) | (19.63cm?)
: 4425 4432 4425
(19.63cm?) | (32.17cm?) | (19.63cm?)

Table 17: Reinforcement ratios (o (%))

Storey, i Col 1 , Col 2 , Col 3 ,
> | (4=0.16m") | (4~0.2025m") | (4.=0.16m")

4 1.84 2.38 1.84

3 2.45 3.18 2.45

2 2.45 3.18 2.45

1 2.45 3.18 2.45

According to EC8 for a structure with a class ductility medium (DCM) the longitudinal reinforcement
ratio for columns should be greater than 0.01 (1%) and not less of 0.04 (4%). From Table 17 it can be
stated that these requirement are fulfilled.

3.2. Direct Displacement Based Design for a peak ground acceleration of 0.27g

The DDBD procedure is applied again to the same frame with the objective of illustrating the design
situation when the displacement capacity exceeds the maximum possible spectral displacement demand.
In this situation, the building was considered being located in Continental Portugal (Lisbon) seismic zone
1.3, as an ordinary building, class of importance II. The value of the peak ground acceleration a, used in
the definition of the response spectrum is 0.27g. Some of the results were obtained previously in section
3.1 and are herein reproduced for convenience. In Table 18 is presented a summary of the results obtained

previously from the DDBD procedure, steps 1 and 2.

Table 18: Results of DDBD in terms of design displacement, equivalent yield displacement, ductility,

effective mass and equivalent viscous damping

Arzer () | Ag(m) | Ay (m) | p | me (tonne) | £(%)
0.307 | 0.230 | 0.141 | 1.64 | 157.34 | 11.99
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The step 3 of the DDBD procedure involves the determination of the effective period at peak
displacement response and it is found from the design displacement spectrum as referred in section 3.1

(see Fig.15).

04

'g Ac,5%=0.27m

S e it aiatataia
3 Ac,11.99%=0.21m
Q

<

=

a

0,0 1.0 2.0 3.0 40

Period [s]

Figure 15: Design Displacement Spectrum

From Fig.15 it can be observed that the design displacement capacity for the SDOF structure exceeds the
maximum possible spectral displacement demand for the considered damping level. This design situation
can occur for very tall or flexible structures or when peak ground acceleration is too low. For these cases
two possibilities must be considered: a) equivalent yield displacement may exceed 5% damping corner
displacement, or b) equivalent yield displacement is less than 5% damping corner displacement, see

Fig.16 a) and b), respectively.

Displacement [m)]
B
Displacement [m]
b

Period [s] Period [s]

a) A> Ay b) A, < A 50,

Figure 16: Design situations when the displacement capacity exceeds the spectral demand

a) Yield displacement exceeds 5% damping value at the period corner (4, > A, 50;)

The structure will respond elastically and the response period T,; will be larger than the corner period

Tp (Td >T, ) As suggested in Ref. [2] the response displacement will be taken equal to A thus the

5%

required design base shear force is given by:

v,

base

=k, %A, 5, (65)
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where, k,; is the elastic stiffness and A is the 5% damping elastic response displacement.

,5%

In this design situation the solution is not unique. In fact the stiffness k. depends on the elastic period,
which depends in turn, on the strength. This leads to an uncertainty in choosing an acceptable value for
the strength. Minimum strength requirements for P-A effects or gravity loads will governs the required

strength.

b) Yield displacement is less than 5% damping value at the period corner (4, < A, 5;)
An inelastic response will occur but not at the level of ductility corresponding to the displacement or drift
capacity of the structure. As in the previous case there was not a unique solution and elastic stiffness
could correspond to any period larger than the period corner. Herein, the elastic period T,; is taken with
the value of the period corner Tp, because if T, is less than T the displacement capacity value will be
incompatible with equivalent damping. An iterative method is required and the following procedure is

recommended in Ref. [2]:
a. Calculate displacement capacity, A,, and the corresponding damping &.

b. Calculate approximately the final displacement response Ay (one possibility to a first guess is to

consider Ay= (A.+ Ay)/2).
c. Calculate the displacement ductility demand corresponding to Ay (1 =Ag4/A)).
d. Calculate the damping & corresponding to ductility demand u.
e. Calculate the displacement response A,.. at T corresponding to &.
f.  Use this new value A, as a new estimation of the final displacement Ay, iteratively.

g. Cycle trough steps c. to f. until a stable solution it found.

From Fig.15 it can be stated that for this case of study the design displacement capacity exceeds the
spectral demand (case b). Then, the inelastic response develops at a lower ductility than the structural
capacity. Thus the effective period is Tp (2.0sec) with compatible displacement and damping. To find the
final design displacement Ay of the SDOF structure it is necessary to follow the iterative procedure

described previously.

In the following, the step-by-step procedure is applied to the frame building of the case of study and the

results presented in Table 19.
Step a.

A;=0.23m and £=11.99%
A.:=021m
Step b.

0.21+0.23

df =0.22m
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Step c.

A,
_ D 022 =1.56
A, 0.14
Step d.

Ep =& +(”‘1)=11.47%
7% 4

Step e.

0.5

10 ) =0.213m

A =027 ————
(21147 (5 +11.47

This will be a new estimate for the final displacement.
Step f.
go to step c. to f. until a stable solution is found (see Table 19).

Table 19: Iterative procedure results

Ay(m) | u | (%) | Aey(m)
1°) 0220 | 1.57 [ 11.47 | 0.213
20| 0213 | 1.51 | 11.10 | 0.216
3| 0216 | 1.53 | 11.23 | 0.215
401 0215 | 1.52 [ 1118 | 0.215

The final design displacement of the SDOF structure is 0.215m.

Fig.17 shows the design displacement spectrum for 5% damping and for the initial damping (§&=11.99%),

as the initial (4;= 0.230m) and final displacement response (A4= 0.215m).

0,3 Ae5=0.270m

& .
= ACOBOm .
Q A
8 0,2 A;=0.215m A 11.99=0.210m
g
A 0.1
T=Tp=2.0sec
0
0,0 1,0 2.0 3,0 4.0

Period [s]
Figure 17: Design Displacement Spectrum

The design base shear force is thus:

4r’m, (66)
Vbase = Ad xke[ = Ad X? = 33387kN

D
Any value less than V. will satisfy the design assumption.
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4. Final remarks

In this report has been presented a brief summary of the Direct Displacement Based Design (DDBD)
procedure. This design procedure was applied to a simple case of study, a reinforced concrete frame
building. Different seismic intensities were considered: peak ground accelerations of 0.35g and 0.27g
were adopted. For the peak ground acceleration of 0.35g, the design displacement capacity of the frame
structure obtained through the DDBD procedure is less than the maximum possible spectral displacement
demand for the considered damping level. For the low seismicity case (0.27g) the displacement capacity

exceeds the maximum possible spectral displacement demand.

It can be stated that the DDBD procedure leads to an easy design than the traditional force-based
procedures [3]. However, the DDBD procedure is based on hand calculations and throughout the design
process some design choices must be done based on engineering judgment. Moreover, the DDBD
procedure can be more difficult to apply, becoming an iterative procedure in some cases (for very flexible
structures or/and low seismic intensity - see section 3.2). Thus, it is herein suggested to develop an

automatic program.
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