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Abstract. The implementation of performance-based design and assessment procedures in seismic codes leads to 
the need for an accurate estimation of local component demands. In the case of framed structures, these are 
usually defined by plastic or chord rotations. A rigorous estimation of these parameters is not straightforward, 
requiring not only the adoption of complex nonlinear structural models, but also of time-consuming numerical 
integration calculations. Moreover, the majority of existing codes and guidelines do not provide any guidance in 
terms of how these response parameters should be estimated. Therefore, the aim of this work is to evaluate and 
propose simplified procedures for the evaluation of structural component demands using both linear and 
nonlinear methods of analysis. To this end, four different steel buildings, designed according to different criteria, 
are analysed and their component demands assessed for increasing levels of seismic intensity. 
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1 INTRODUCTION 
 
The implementation of performance-based design concepts and assessment procedures in seismic 
codes requires from the analyst the need for an accurate estimation of local component demands in 
order to verify compliance criteria. In the case of framed structures, local component demands are 
commonly expressed in terms of plastic rotations in the case of steel members, and in terms of chord 
rotations in the case of RC members. The accurate estimation of these parameters is not 
straightforward, requiring not only the adoption of complex nonlinear structural models, but also of 
time-consuming numerical integration calculations. Moreover, the majority of existing guidelines and 
codes do not provide any guidance in terms of how these response parameters should be estimated. 
This situation arises, for example, when applying the linear analysis procedures prescribed in Part 3 of 
Eurocode 8 (CEN, 2005a) to steel structures. Despite the limitation of this type of analysis in 
providing reliable predictions of inelastic response parameters, the safety checks prescribed in the 
European code are largely based in the control of plastic member rotations. 
 
Recently, a number of studies addressing this issue have been conducted (Günay and Sucuoglu 2010; 
Romão et al. 2010; Browning et al. 2008; Kosmopoulos and Fardis 2007) in which the accuracy of 
linear elastic analysis has been evaluated. On the basis of the results of more than a thousand non-
linear dynamic analysis, Panagiotakos and Fardis (1999) developed rules for the estimation of mean 
and upper-characteristic peak inelastic member chord rotations from linear analysis. These mainly 
consist on the use of conversion factors on elastic chord rotations derived from modal response 
spectrum analysis or linear static analysis with inverted triangular equivalent lateral forces. For the 
mean value the authors proposed a value of about 1.0, while those for the upper-characteristic values 
the same authors proposed a value of about 1.5 over the height of the buildings. As referred by the 
authors, this proposal is essentially a generalization of the well-known equal-displacement rule of 
SDOF systems and its effectiveness is due to the fact that the fundamental period of the cracked elastic 
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structures considered is beyond the corner period of the input motion. However, the previous results 
were only derived from planwise regular and symmetric RC buildings, which raises some questions 
regarding its range of applicability. 
As a result, Kosmopoulos and Fardis (2007) extended the previous work to asymmetric multi-storey 
RC buildings, having again concluded that elastic modal response spectrum analysis provides, on 
average, unbiased and fairly accurate estimates of member inelastic chord rotations. These conclusions 
were drawn from cases violating the linear analysis applicability criteria proposed by both EC8-3 and 
ASCE41-06 (ASCE, 2007), thus suggesting that there is room for re-examination and possible 
relaxation of the criteria, as already discussed in previous works (Romão et al. 2010; Fardis and 
Kosmopoulos 2007; Pinto and Franchin 2008). 
 
Additionally, Günay and Sucuoglu (2010) proposed an improved linear elastic analysis procedure 
based on reducing the stiffness of structural members that are expected to respond in inelastic range in 
a single global iteration step, wherein inelastic chord rotations are determined on the basis of the equal 
displacement rule. The results obtained revealed that linear analysis can be effectively used, with such 
a simple modification, to predict the nonlinear seismic performance of structures, being at least as 
accurate as the prediction of nonlinear static procedures. 
 
Local deformation demands can be alternatively measured in terms of story drifts (Gupta and 
Krawinkler 1999). In this case, the safety of the structure is assessed by comparing those values with 
indicative limit values proposed by guidelines and codes for various performance levels (e.g.,  and 
Bertero 2002; Gioncu and Mazzolani 2002; Grecea et al. 2004). Based on a study of a set of RC 
buildings, Browning et al. (2008) observed that, on average, the magnitude of the maximum story drift 
ratio calculated using nonlinear analysis is 1.5 times larger than that estimated using linear modal 
analysis, with a coefficient of variation of approximately 0.39. The location of the maximum inter-
storey drift was also seen to vary significantly when using nonlinear and linear analysis. Several works 
proposing approximate methods to estimate these maximum lateral deformation demands can be 
found in literature (e.g., Ruiz-García and Miranda 2006; Akkar and Miranda 2005; Miranda and Reyes 
2002). 
 
In spite of the broad agreement that nonlinear-based procedures are a better tool to assess existing 
structures, linear elastic methods are, and will continue to be, used due to its relative simplicity and 
familiarity to practitioners, as confirmed in a survey conducted by Paret et al. (2011). Hence, further 
studies on linear analysis and proposals of new and more reliable procedures are required (Toranzo-
Dianderas 2009). Therefore, and noting that the majority of studies conducted mainly focused on RC 
buildings, the aim of this work is to evaluate and propose procedures for the estimation of structural 
component demands using both linear and nonlinear methods of analysis. To this end, four steel 
buildings are analysed and the local component demands assessed for increasing levels of seismic 
intensity. 
 
 
2 METHODS OF QUANTIFYING LOCAL DEFORMATION DEMANDS 
 
From a code perspective, the assessment of existing buildings should be carried out by verifying the 
safety of each individual member of the structure. If any primary member does not verify safety, then 
the building fails its assessment. In steel moment-framed structures, these individual safety checks are 
typically based on the control of plastic hinge rotations. The quantification of this demand parameter 
in a beam is typical beam is usually carried out by assuming that the member can be analysed as a set 
of two independent cantilevers. This simplification results from the fact that under dominant lateral 
loading, the contraflexure points are localized somewhere close to the mid-span of the beam. 
However, other approaches have been proposed for comparison purposes with experimentally tested 
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elements  (Gioncu and Mazzolani 2002; Gioncu and Petcu 1997). Figure 1 represents a decomposition 
example of a simple structural system into standard cantilever beams. 
 
As curvature demands increase locally, cross-sectional plastification begins to take place at all points 
where the yielding moment (My) is exceeded. Plastification spreads down the flanges, into the web, 
and eventually a fully plastified cross-section is reached at Mpl over some length of member 
designated as plastic hinge length Lph. The accurate quantification of the member plastic rotation θpl 
can be defined as follows (Bruneau et al. 1998, Priestley et al. 2007): 
 

( )∫
−

=
L

LL

plpl

ph

dxxφθ  (1) 

 
where Φpl represents the plastic curvatures, which verify the condition Φ(x)> Φy, developed over Lph, 
L is the length of the equivalent cantilever beam, defined as the distance from the end node to the 
point of contraflexure and Φy is the cross-sectional yielding curvature defined as My/EI. 
 

 

Figure 1. Decomposition of structure into standard cantilever beams and the concept of plastic rotation 
definition.  

 
Alternatively, the member local deformation demands can be quantified in terms of chord rotations, 
which are defined as the angle between the chord connecting the end sections of the member to the 
contraflexure point and the tangent to the member axis at the end section (Figure 2). This is the 
approach followed by EC8-3 to assess RC members (Mpampatsikos et al. 2008, Romão et al. 2010). 
 

 (A)  (B) 

Figure 2. Examples of chord rotation definition: (A) typical beam and (B) simplified column.  
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The chord rotations θ1 and θ2 of the two structural member ends can be analytically quantified by 
means of the Exact Integral Method (EIM), as follows: 
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where xLs is the abscissa of the point of contraflexure and L the member length. However, the 
alternative Exact Geometrical Method (EGM) is commonly adopted due to its prompt applicability. In 
this case, chord rotations are defined in a geometric way. It can be seen from Figure 2 that 
tan(θ2)=δ2/x* which, under the hypothesis that θ2 is small, leads to x* = xLs and hence tan(θ2)= θ2, 
which can be then simplified as follows: 
 

Lsx22 δθ =  (4) 

 
Since the calculation of δ2 may not be straightforward, θ2 is defined by: 
 

ba 222 θθθ −=  (5) 

 
where θ2a represents the contribution of the deflection at xLs with respect to the initial member 
configuration and θ2a corresponds to the nodal rotation, considering clockwise rotations as positive. 
Equally, θ1 is defined as: 
 

ba 111 θθθ −=  (6) 

 
having θ1a and θ1b the same meaning of θ2a and θ2b, respectively. It has been found (Romão et al. 2010) 
that in cases of frame elements under large deformation demands, θ1a is approximately equal to θ2a. In 
these situations, an Approximate Geometrical Method (AGM-DR) that considers member drift and 
nodal rotations for beams and columns can be used to compute the chord rotation without evaluating 
xLs by setting: 
 

Ld yba == 21 θθ  (7) 

 
where dy represents the relative transversal displacements of sections 1 and 2, neglecting the 
contribution of the axial deformation of the member. Assuming these approximations, θ1 and θ2 can be 
quantified without further difficulties from Equations (5) and (6). More detailed information on the 
quantification of chord rotation demands can be found elsewhere (Romão et al. 2010). 
 
 
3 CASE STUDY DESCRIPTION  
 
As mentioned above, the study presented herein was conducted considering four different steel 
buildings. The plan layout and the elevation view of a moment-resisting frame of the building are 
illustrated in Figure 1. Each building was designed according to different criteria. The first building, 
denoted as GB, was designed accounting only for gravity loads following the rules prescribed in 
Eurocode 3 (CEN, 2005b). The remaining three buildings were seismically designed according to Part 
1 of EC8 adopting a value for the behaviour factor (q) equal to 4.0. The difference between the three 
buildings is found on the different limits considered for the inter-storey drift sensitivity coefficient (θ), 
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which is the parameter used to check for the need to consider second-order effects in the analysis and 
design process. Thus, the SB1 building was designed assuming 0.2< θmax < 0.3, the SB2 building was 
designed considering 0.1< θmax ≤ 0.2, being the second-order effects taken into account by multiplying 
the relevant seismic action effects by a factor equal to 1/(1 - θ), and finally the SB3 building was 
designed in order to minimize the relevance of second-order effects (θ ≤ 0.1). 
 

            

Figure 3. General features of the analysed structures.  
 
The analyses of the frames were performed with the open source software OpenSees (PEER, 2011). 
Regarding the models used for nonlinear analysis, force-based beam-column elements were adopted 
considering 10 Gauss-Lobatto integration points along its length. Also, a cross-section discretization 
solution by fibers was followed and a bilinear elasto-plastic material model with 0.5% hardening was 
adopted for structural steel. The effect of the panel zones was neglected in this study. Modal analysis 
was firstly carried out for each frame with the aim of obtaining the dynamic characteristics of the 
buildings. The first three vibration periods of each frame are listed in Table 1. 
 
Table 1. Dynamic characteristics of the buildings 

Building Periods of Vibration (s) 

 Mode 1 Mode 2 Mode 3 

GB 1.63 0.50 0.26 

SB1 1.50 0.48 0.25 

SB2 1.20 0.39 0.20 

SB3 0.90 0.38 0.13 

 
The goal of this case study is not only to evaluate the effectiveness of each of the previously exposed 
methods of quantifying member deformation demands but also to address the issue of how to estimate 
plastic deformation demands in the context of linear elastic analysis. A key question on how to 
compute deformation demands from linear analysis which can be directly compared with the plastic 
rotation limits prescribed in EC8-3 should naturally be placed. The most suitable answer was found to 
be the determination of chord rotations, quantified on the basis of the EGM and AGM-DR methods 
described before. While the application of the AGM-DR is simple, based on the manipulation of nodal 
displacements and rotations, the EGM requires the calculation of the deflection at xLs to obtain θ1a and 
θ2a. This can be carried out by dividing each member into two cantilever beams with lengths equal to 
L- xLs and xLs with reference to nodes 1 and 2, respectively. Each cantilever beam is then treated 
individually and the deflection at its free node, equal to the deflection at xLs, calculated using the 
elastic integration method. In the present case study, since gravity loads were simply defined as point 
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loads applied at the beam mid-span and the diagrams of bending moments are linear, the deflection 
can be calculated from node 2 as: 
 

EIxVx LsLsb 3
3

22 −+= θδδ  (8) 

 
where δ2 is the vertical displacement of node 2 and V the shear developed in the member, equal to 
M2/xLs, being M2 the bending moment at node 2. 
 
Therefore, in order to evaluate the effectiveness of each method for quantifying chord rotation 
demands per se, thus excluding the variability associated with the type of method of analysis 
considered, pushover analyses were performed assuming both linear and nonlinear material behaviour. 
A fixed force pattern was defined as proportional to both the mass and height of each storey. The 
results were computed for total drift ratio (top displacement divided by building height) values of 
1.0%, 2.5% and 4%. The following aspects will be considered in the discussion of results: 
• The accuracy of AGM-DRNL comparing to the reference EIMNL in the quantification of chord 

rotation demands when nonlinear material behaviour is considered; 
• The ability of linear analysis to provide reasonable estimates of chord rotation by means of EGML 

and AGM-DRL; 
• The feasibility of using chord rotations to quantify plastic rotations.  
 
 
4 RESULTS 
 
Some of the main results obtained from this study are illustrated in Figure 4 to Figure 6. It is worth 
noting the remarkable influence of gravity loads in the distribution of plasticity in the members and 
hence the expected impact on the quantification of the chord rotations. A simplified expression to 
determine the rotation of the plastic hinge region, defined as θp=δ/0.5L, where δ is the beam deflection 
at midspan and L the beam span, is commonly found in seismic codes and guidelines (e.g. EC8, ASCE 
41, etc.). This expression assumes that plasticity is symmetrically distributed along the beam length or, 
in other words, that equal plastic rotation demands develop at both ends of a beam. However, it is 
known (Castro et al. 2008) that in most cases this assumption is not valid, particularly when the level 
of gravity moments represent an important fraction of the beam flexural strength. Hence, it may be 
seen that when gravity loads are excluded, not only the chord rotation demands are equal at both beam 
ends (positive chord rotation values refer to node 1 and negative values to node 2), but also the 
maximum chord rotation value decreases about 30%, 23% and 20% for total drift values of 1.0%, 
2.5% and 4.0%, respectively. 
 
The results also indicate that as the lateral stiffness of the buildings increase (SB1 to SB3), an 
increasingly uniform distribution of plasticity along the building height is observed. This behaviour 
reflects the development of a plastic mechanism largely composed by beam hinges which results in a 
symmetrical distribution of chord rotation demands at the beam ends. Bojórquez et al. (2011) found 
similar results when assessing a set of buildings seismically designed according to the Mexico City 
Building Code, although referring that this equal distribution of rotation demands over the beams 
located at a particular story is due to the presence of rigid diaphragms. 
 
Concerning the methods of quantifying local deformation demands, it may be seen that plastic 
behaviour tends to concentrate at the first and second stories of the building and that beams V13, V14 
and V15 appear as critical and most demanded. Looking to the inter-storey drifts developed at those 
stories and the chord rotations at the referred beams, one may conclude that the AGM-DRNL method 
underestimates the demands comparing to the EIMNL method, particularly at the right node (node 2) of 
the beams, and derives values quite similar to those of inter-storey drifts. Yet, when gravity loads are 
neglected a perfect match is observed between both methods. In contrast, the AGM-DRL and the EGML 
yielded similar results, although underestimating the demands at lower stories of the building in 
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comparison to EIMNL. These results are in agreement with the distribution of inter-storey drifts 
depicted in Figure 5(A). Similar findings were observed in the first storey columns (P5, P10, P15 and 
P20), where linear analysis increasingly underestimated the chord rotation demands as the lateral 
deformation of the structure increased (Figure 5(C)).  
 
As far as the use of chord rotations is concerned, Figure 5(D) and (E) demonstrate that it performs 
well in the prediction of plastic rotation demands, albeit some differences were observed at the left 
node (node 1) of the beams, which progressively diminished as the global drift increased. The yielded 
component of chord rotations was deducted to its total value so as to realistically reproduce plastic 
rotations. Two approaches were adopted in the definition of the chord rotation at yielding: the 
ASCE41-06 simplified approach, according to which the chord rotation at yielding is given for beams 
as: 
 

EILM ply 6=θ  (9) 

 

and for columns as, 
 

( )plEdply NNEILM −= 16θ  (9) 

 

where NED is the actual axial force in the element and Npl the expected axial capacity of the element; 
and the accurate approach, which consists in the determination of the actual value of the chord rotation 
at yielding. It was observed that the ASCE41-06 simplified approach leads to unconservative 
estimates of rotation demands. 
 
From the linear analysis applicability point of view, consistent estimates of deformations demands 
using linear elastic analysis seem to be only attained at building SB3, despite EC8-3 and ASCE41-06 
allow its use to all buildings for both the Significant Damage and Damage Limitation limit states and 
EC8-3 enables its use to buildings SB1 and SB2 at the Near Collapse limit state (Araújo et al. 2012).  
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Figure 4. Beam chord rotations excluding the influence of gravity loads for building GB. The positive and 
negative values are referred to nodes 1 and 2 of the various elements, respectively. 

 
From the results obtained one can conclude that linear analysis does not provide reliable estimates of 
chord rotation as levels of inaccuracy in the order of 30 to 50% were found for both beams and 
columns. This was verified even in buildings SB1 and SB2, which were seismically designed and 
which, according to EC8-3, could be assessed using linear analysis for all limit states. As a result, the 
approach proposed by EC8-3 to verify the seismic safety of existing steel buildings through linear 
elastic procedures seems to be unreliable and hence needs reassessment. A possible solution could 
consist in considering different compliance criteria, based for example in terms of interstorey drift 
ratios instead of chord rotations. The results obtained in this study allow concluding that linear 
analysis provides more reliable estimates of this demand parameter. Alternatively, the linear analysis 
applicability criteria could be restricted to buildings governed largely by weak beam-strong column 
mechanisms, as it is the case of building SB3, for which the local and global chord rotation errors 
were below 20%. 
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Figure 5. Local deformation demand estimates for building GB and different levels of global drift: (A) inter-
storey drifts; (B) beam chord rotations; (C) column chord rotations; (D) beam plastic rotations; (E) and column 
plastic rotations. The positive and negative values of the deformation demands are referred to nodes 1 and 2 of 

the various elements, respectively.  
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 Figure 6.  Evolution of the local chord rotation prediction error of beams with the period of vibration of 
buildings: (A) gravity loaded case; (B) gravity unloaded case. 

 
 
5 CONCLUSIONS 
 
In this paper, various methods of quantifying local deformation demands for the seismic assessment of 
structural components were presented. Its application to a set of steel buildings was carried out and its 
effectiveness evaluated. Additionally, the issue of how to compute local deformation demands using 
linear analysis was addressed. 
 
The results obtained from the study of four steel buildings allow concluding that chord rotations 
evaluated with the Exact Integration Method (EIMNL) provided more reliable estimates of plastic 
rotations, regardless of the lateral stiffness of the building. The Approximate Geometrical Method 
(AGMNL) led to some considerable misestimates of deformation demands in buildings SB1 and SB2, 
with differences of about 40% with respect to chord rotations obtained using the EIMNL method. In 
contrast, differences lower than 20% were observed in building SB3. Likewise, the estimation of 
chord rotations using linear analysis (EGML) led to inaccurate results comparing to the ones obtained 
from nonlinear analysis, despite the fact that, according to EC8-3, linear procedures could be applied 
at least to buildings SB1 and SB2. Errors in the order of 30% to 50% were found in these cases, with 
the exception of building SB2 where the error was lower than 20%. 
 
It becomes clear from the study that further research should be carried out in order to improve the 
assessment procedures prescribed in the European seismic assessment code, particularly in terms of 
the procedures applicable to steel buildings.  
 
 
References 
 
AISC (2005) Seismic provisions for structural steel buildings. American Institute of Steel Construction,Chicago, 

Illinois. 
Akkar, S. and Miranda, E. (2005) Statistical evaluation of approximate methods for estimating maximum 

deformation demands on existing structures. Journal of Structural Engineering 131: 160-172. 
ASCE (2007) Seismic rehabilitation of existing buildings (ASCE/SEI 41-06). American Society of Civil 

Engineers,Reston, Virginia, USA. 
Araújo, M., Castro, J. M., Romão, X. and Delgado, R. (2012) Comparative study of the european and american 

seismic safety assessment procedures for existing steel buildings. Proceedings of the 15th World Conference 

on Earthquake Engineering, Lisbon, Portugal. 
Bertero, R. D. and Bertero, V. V. (2002) Performance-based seismic engineering: the need for a reliable 

conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics 31: 627–652. 



A. Glad, B.S. Lucky, R. Happy, L.A. Fortune / VEESD 2013  10

Bojórquez, E., Terán-Gilmore, A., Ruiz, S. and Reyes-Salazar, A. (2011) Evaluation of structural reliability of 
steel frames: Interstory drift versus plastic hysteretic energy. Earthquake Spectra 27: 661-682. 

Browning, J., Warden, B., Matamoros, A. and Lepage, A. (2008) Global and local seismic drift estimates for RC 
frames. Engineering Structures 30: 1262–1271. 

Bruneau, M., Uang, C.-M. and Whittaker, A. (1998) Ductile design of steel structures. McGraw-Hill, New York. 
Castro, J. M., Dávila-Arbona, F. and Elghazouli, A. (2008) Seismic Design approaches for panel zones in steel 

moment frames. Journal of Earthquake Engineering 12(S1): 34-51. 
CEN (2004) ENV 1998-1 Eurocode 8: Design of strucutures for earthquake resistance - Part 1: General rules, 

seismic actions and rules for buildings. European Commitee for Standardization,Brussels, Belgium. 
CEN (2005a) ENV 1998-3 Eurocode 8: Design of strucutures for earthquake resistance - Part 3: Assessment and 

retrofitting of buildings. European Committee for Standardization, Brussels, Belgium. 
CEN (2005b) ENV 1993-1 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for 

buildings. European Committee for Standardization, Brussels, Belgium. 
Fardis, M. and Kosmopoulos, A. (2007) Practical implementation of seismic assessment method in Eurocode 8 - 

Part 3, with linear or nonlinear analysis and deformation-based verification using empirical chord rotation 
capacity expressions. Sixth National Conference on Earthquake Engineering, Istanbul, Turkey. 

Gioncu, V. and Mazzolani, F. (2002) Ductility of seismic resistant steel structures. Spon Press, Taylor & Francis 
Group, London, Great Britain. 

Gioncu, V. and Petcu, D. (1997) Available rotation capacity of wide-flange beams and beam-columns. Journal 

of Constructional Steel Research 43: 219–244. 
Grecea, D., Dinu, F. and Dubina, D. (2004) Performance criteria for MR steel frames in seismic zones. Journal 

of Constructional Steel Research 60: 739–749. 
Günay, M. S. and Sucuoglu, H. (2010) An improvement to linear-elastic procedures for seismic performance 

assessment. Earthquake Engineering and Structural Dynamics 39: 907–931. 
Gupta, A. and Krawinkler, H. (1999) Seismic demands for performance evaluation of steel moment resisiting 

frame structures. Report No. 132, John A. Blume Earthquake Engineering Center, Standford 
University,Standford, California. 

Kosmopoulos, A. and Fardis, M. (2007) Estimation of inelastic seismic deformations in asymmetric multistorey 
RC buildings. Earthquake Engineering and Structural Dynamics 36: 1209–1234. 

Miranda, E. and Reyes, C. J. (2002) Approximate lateral drift demands in multistory buildings with nonuniform 
stiffness. Journal of Structural Engineering 128: 840-849. 

Mpampatsikos, V., Nascimbene, R. and Petrini, L. (2008) A critical review of the R.C. frame existing building 
assessment procedure according to Eurocode 8 and Italian Seismic Code. Journal of Earthquake 

Engineering 12: 52-82. 
Panagiotakos, T. and Fardis, M. (1999) Estimation of inelastic deformation demands in multistorey RC frame 

buildings. Earthquake Engineering and Structural Dynamics 28: 501-528. 
Paret, T. F., Searer, G. R. and Freeman, S. A. (2011) ASCE 31 and 41: Apocalypse Now. Structures Congress 

2011, Las Vegas, Nevada. 
Pinto, P. E. and Franchin, P. (2008) Assessing existing buildings with Eurocode 8 Part 3: a discussion with some 

proposals. Background documents for the "Eurocodes: Background and applications" workshop, Brussels, 
Belgium. 

Priestley, M. J. N., Calvi, C. M. and Kowalsky, M. J. (2007) Displacement-Based Seismic Design of Structures. 
IUSS Press, Pavia, Italy. 

Romão, X., Delgado, R. and Costa, A. (2010) Practical aspects of demand and capacity evaluation of RC 
members in the context of EC8-3. Earthquake Engineering and Structural Dynamics 39: 473–499. 

Romão, X., Delgado, R., Guedes, J. and Costa, A. (2010b) A comparative application of different EC8-3 
procedures for the seismic safety assessment of existing structures. Bulletin of Earthquake Engineering 8: 
91–118. 

Ruiz-García, J. and Miranda, E. (2006) Inelastic displacement ratios for evaluation of structures built on soft soil 
sites. Earthquake Engineering and Structural Dynamics 35: 679–694. 

Toranzo-Dianderas, L. (2009) Evaluation of the ASCE 41 linear elastic procedure for seismic retrofit of existing 
structures: Pros and cons of the method. Proceedings of the 2009 ATC & SEI Conference on Improving the 

Seismic Performance of Existing Buildings and Other Structures, San Francisco, California. 

 


