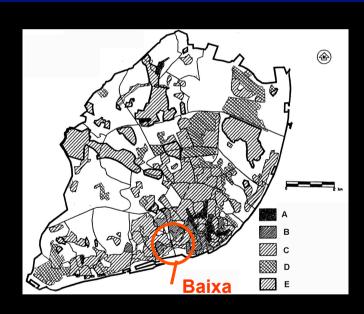


CONCEPÇÃO, MODELAÇÃO ESTRATÉGIAS DE REFORÇO E ANÁLISE SÍSMICA DE ESTRUTURAS ANTIGAS

Rita BENTO e Mário LOPES

IST, Lisboa, Maio 2011


- 1. DESCRIÇÃO
- 2. MODELAÇÃO DE UM EDIFÍCIO
- 3. MODELAÇÃO DE UM QUARTEIRÃO
- 4. ANÁLISE DE UM EDIFÍCIO
- 5. REFORÇO
- 6. ALTERAÇÕES
- 7. INVESTIGAÇÃO EM CURSO
- 8. REFERÊNCIA À REGULAMENTAÇÃO EXISTENTE

Descrição

Descrição

Os edifícios de alvenaria constituem uma percentagem importante do parque edificado da cidade de Lisboa.

LEGENDA:

A - EDIFÍCIOS DE ALVENARIA (<1755)

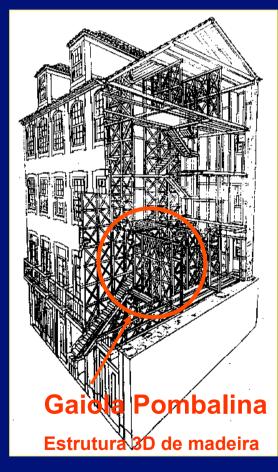
B - EDIFÍCIOS POMBALINOS E SEMELHANTES (1755 a 1880)

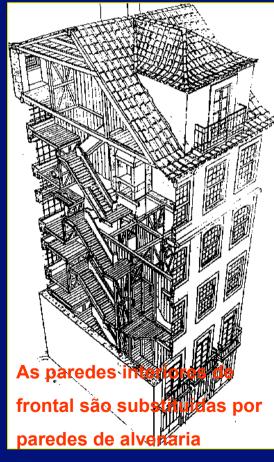
C - EDIFÍCIOS ALTOS DE ALVENARIA COM PAVIMENTOS DE MADEIRA OU DE BETÃO E PAREDES RESISTENTES DE ALVENARIA (1880 a 1940)

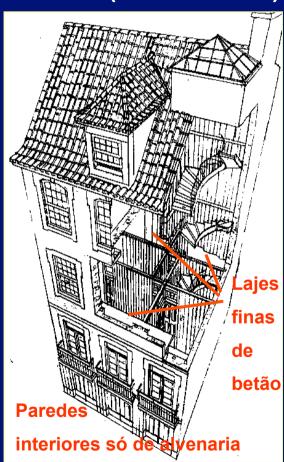
D – EDIFÍCIOS DE ALVENARIA, COM PAVIMENTOS EM BETÃO OU COM ESTRUTURA PORTICADA DE BETÃO (1940 a 1960)

E - EDIFÍCIOS RECENTES DE BETÃO ARMADO (>1960)

Dentro dos edifícios construídos após 1755, podem-se distinguir três fases distintas:


- Pombalinos
- Gaioleiros
- De Placa



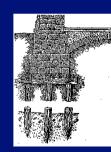

Descrição

Edifícios Pombalinos Edifícios Gaioleiros (1755 a 1880) (1880 a 1940)

Edifícios de 'Placa' (1940 a 1960)

Alteração de rigidez, resistência e ductilidade

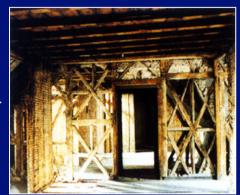
Edifício Pombalino Tipo


INSTITUTO SUPERIOR TÉCNICO

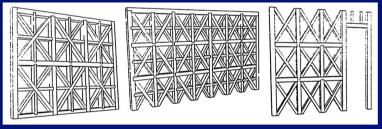
Descrição

Número máximo de pisos: 3

águas___ furtadas


pavimentos de madeira

Fundações indirectas através de estacas curtas de pequeno diâmetro


Abóbadas de alvenaria de blocos cerâmicos e arcos de pedra

Disposições anti-sísmicas

paredes interiores de frontal

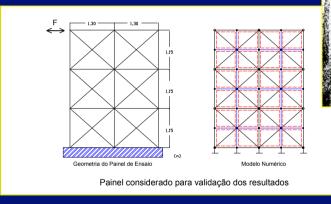
Cruzes de Santo André
com várias geometrias possíveis

Modelação Frontal

Modelação Edifício Os resultados numéricos são próximos da rigidez experimental caso se removam as diagonais traccionadas.

Resultado realista se se considerarem as ligações observadas em edifícios antigos e as técnicas construtivas usuais da época

Consegue-se uma melhor aproximação dos resultados experimentais se não se considerar a existência de alvenaria


Modelação Frontal

Modelação Edifício **Validação do modelo** - Comparação dos resultados experimentais de um painel ensaiado com os resultados do modelo numérico

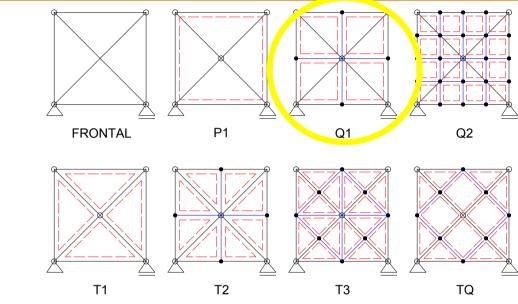
Resultados Experimentais Provete 1 [Ramos, 2000]

Painel ensaiado [Ramos et al, 2001]

Modelo do painel

Calibração do modelo: Rigidez numérica K semelhante à rigidez 'tangente' experimental K₀

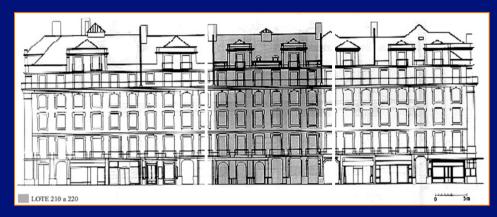
Rigidez numérica demasiado elevada

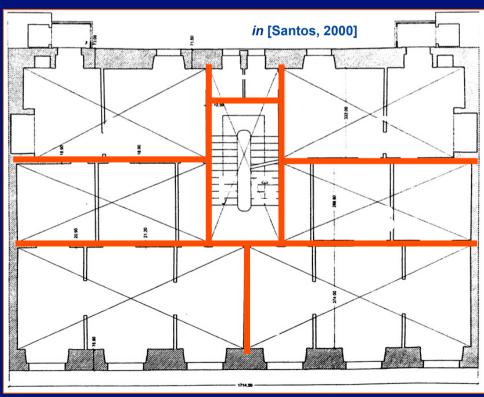

Modelação Frontal

Modelação Edifício Escolha da malha

de elementos
finitos a utilizar no
modelo global do
edifício

ELEMENTOS DE FRONTAL: Malhas estudadas (elementos shell)

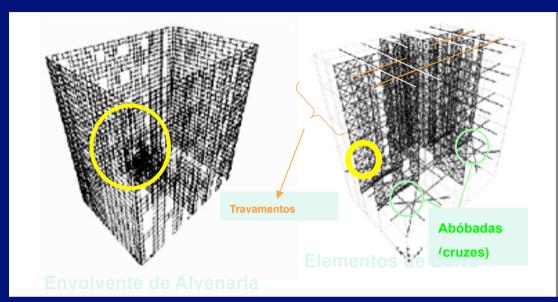



Escolha da malha Quando as diferenças nos resultados deixam de ser significativas (Convergência)

Análise de sensibilidade a E e v da alvenaria

Modelação Edifício

Edifício-exemplo


Rua da Prata, 210 a 212

Modelo Numérico – SAP 2000®

Modelação

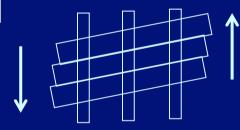
Paredes de Alvenaria

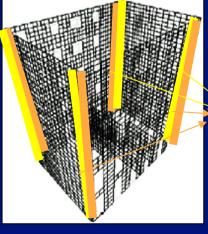
Elementos 2D - shell

articulados

Paredes de Frontal

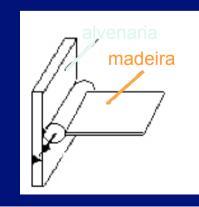
Elementos de barra bi-


Piso Térreo


Arcos: Treliça

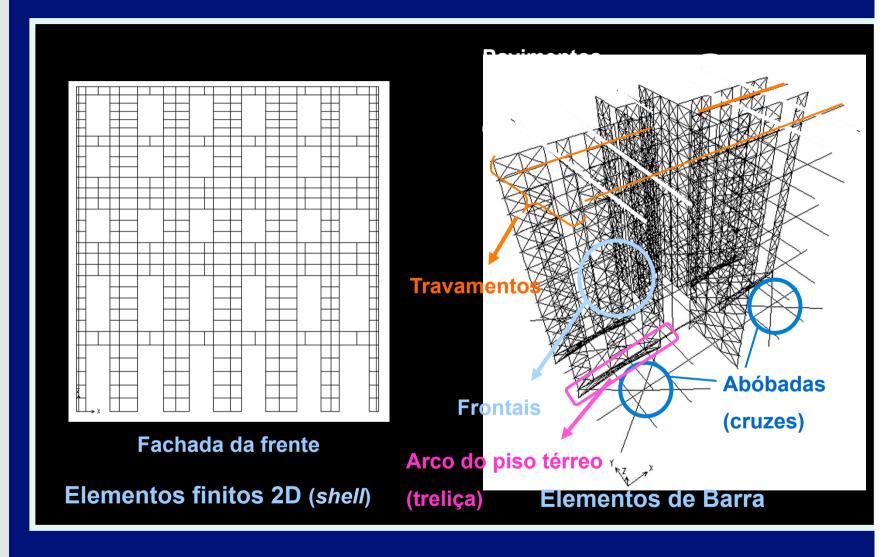
Abóbadas: Cruzes

Pavimentos


Piso deformável

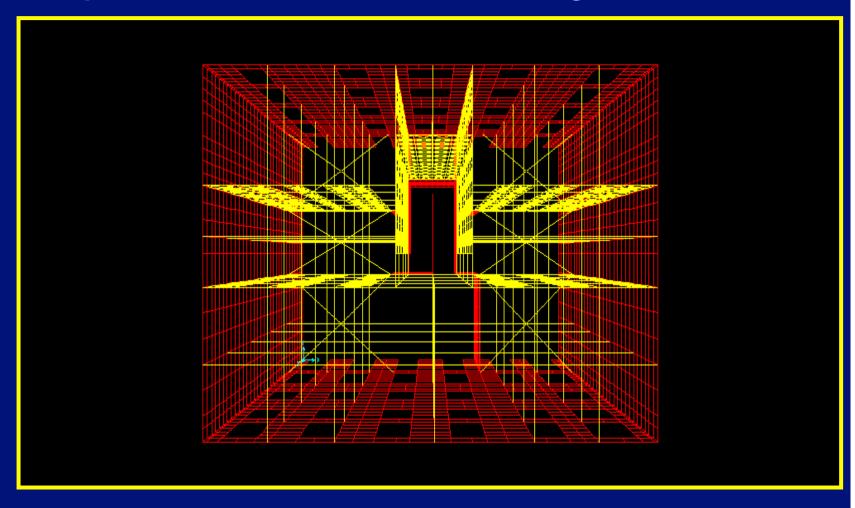
Alvenaria de pior qualidade

Ligações madeira / alvenaria


Rotações permitidas

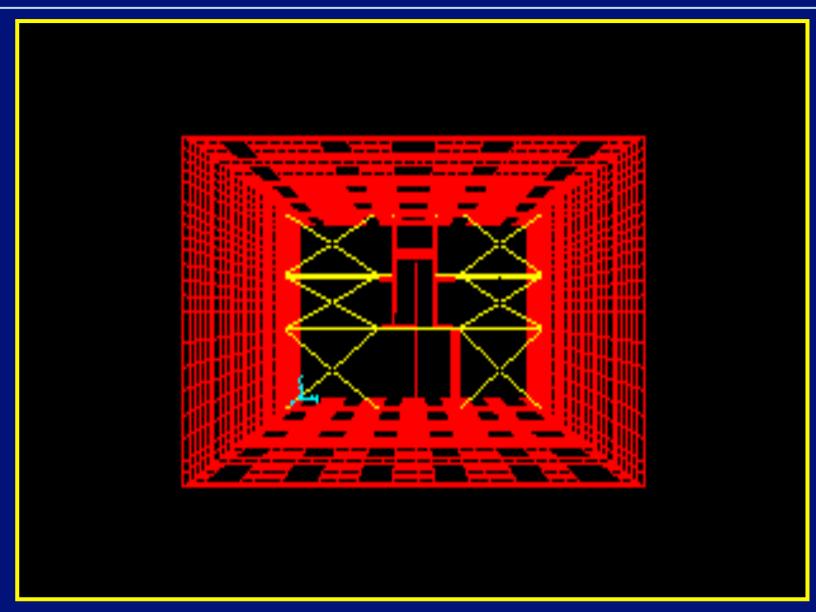
Modelo Numérico – SAP 2000®

Modelação Edifício



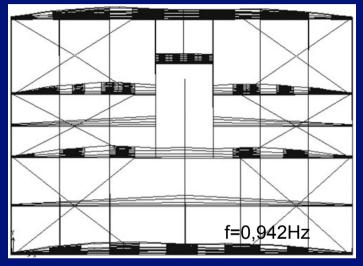
Viabilidade em Projecto: Programa de Cálculo Comercial (SAP2000®)

Modelação Edifício

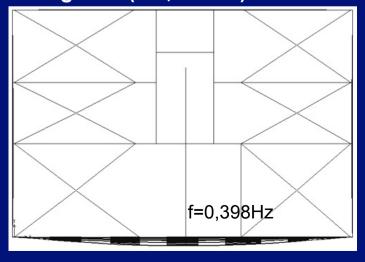

Comportamento Dinâmico da Estrutura Original

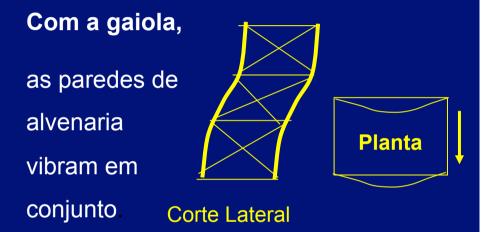
Edifício com gaiola (SAP2000®)

Modelação Edifício



Edifício sem gaiola (SAP2000®)


Influência da Gaiola: Confere Rigidez


Modelação Edifício 1º Modo de Vibração com gaiola (f=0,942 Hz)

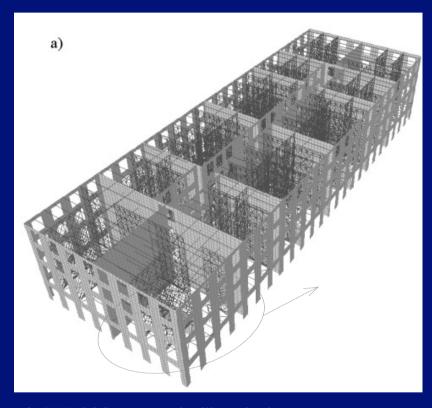
sem gaiola (f=0,398 Hz)

Impede o aparecimento de modos de vibração locais

Sem a gaiola,

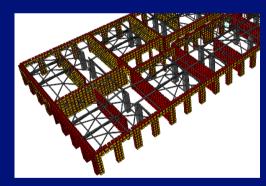
as paredes de alvenaria vibram independentemente umas das outras

Planta


Modos locais

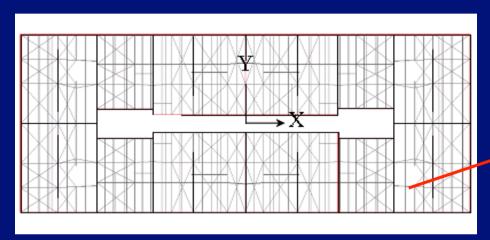
Quarteirão Pombalino

Modelação Quarteirão

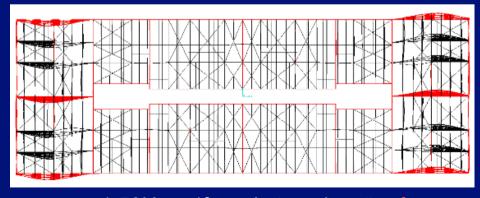

Criação do modelo tridimensional:

- →175 000 graus de liberdade;
- → Massa concentrada nos nós e nas paredes alvenaria;
- →Barrotes dos pisos como barras bi-articuladas;
- →Elementos dos frontais bi-articulados no seu plano;
- →Fundações: encastramentos;
- → Acções e propriedades mecânicas com valores médios.

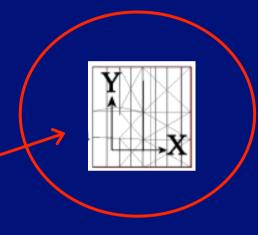
Pormenor de um piso corrente

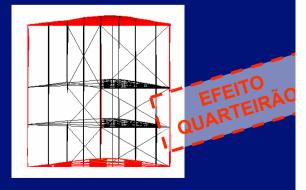

Pormenor do piso térreo

Frequências e Modos de Vibração



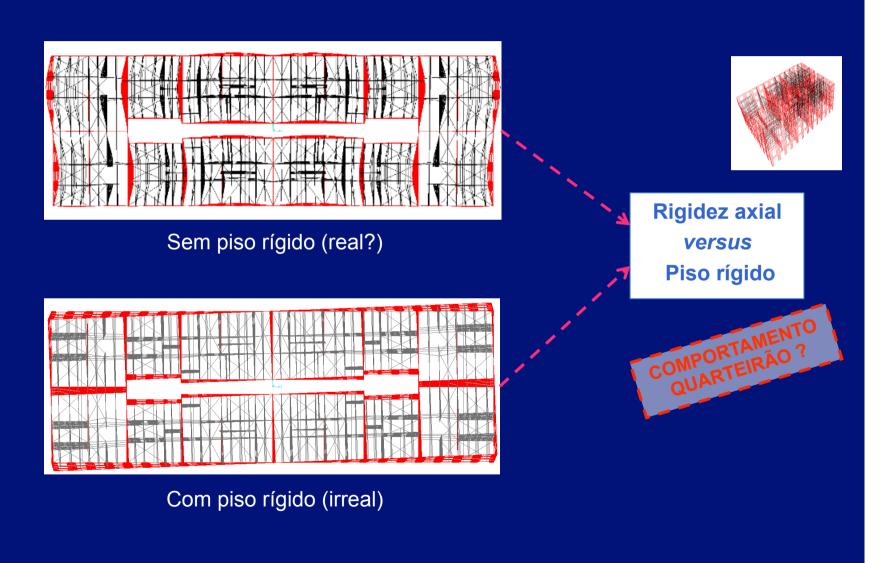
Modelação Quarteirão


Quarteirão vs edifício isolado:


Modelo global do quarteirão

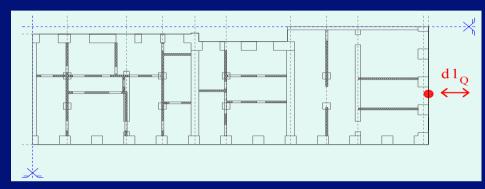
1.58Hz – 1º modo translacção 🗲

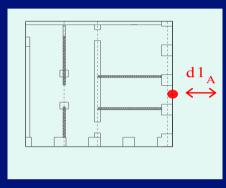
Modelo de edifício de gaveto isolado



→ 1.25Hz – 1º modo translacção

Modelação Quarteirão


Influência da deformabilidade do piso na resposta da estrutura:



Modelação Quarteirão

Efeito de conjunto vs comportamento de edifício isolado:

Deslocamento fachada quarteirão

Deslocamento fachada edifício isolado

Comparação deslocamentos

Mecanismo de Colapso

Resultados

Esforços de Dimensionamento:

$$F_{sd} = F_{CQP} \pm \gamma_{sis} F_{E}$$

Definição de Danos: $F_{sd} \ge F_{Rd}$

Rotura de

Ligações elementos

Estruturais

Aumento de γ_{sis}

Evolução de Danos até

ao COLAPSO

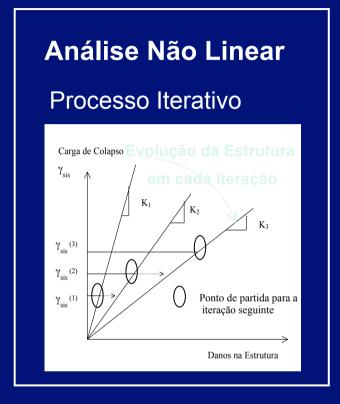
γ max sis

Intensidade

Máxima da Acção

Sísmica

γ max sis Quantifica a resistência sísmica da estrutura

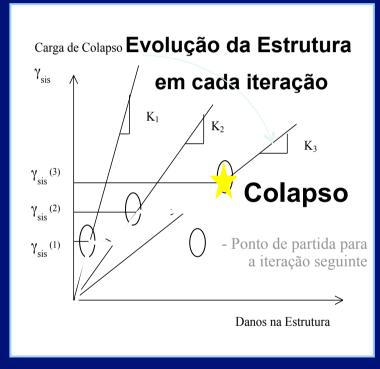

Permite comparar soluções diferentes

Fontes de Não Linearidade

Resultados

- Roturas localizadas
 (fendilhação da alvenaria)
- Comportamento das ligações (rotura frágil)
- Comportamento n\u00e3o linear da alvenaria

Em cada iteração:

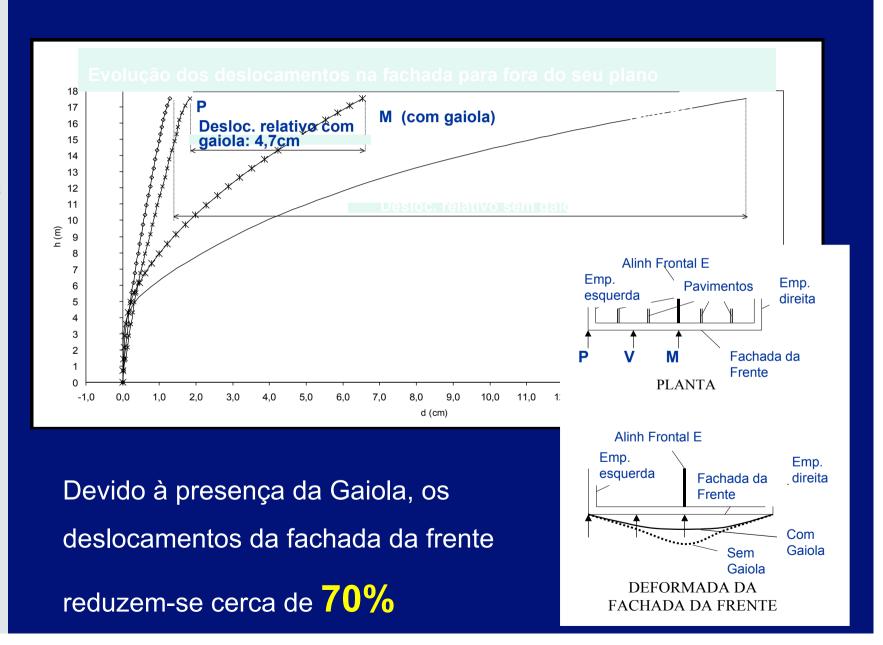

- . Análise linear
- . A estrutura a analisar resulta da estrutura analisada na iteração anterior, após a remoção das ligações em rotura

Mecanismo de Colapso

Resultados

Cálculo iterativo

[Cardoso, 2002]


Viabilidade em Projecto

Em cada iteração:

- Análise linear elástica tridimensional.
- · Análise dinâmica por espectro de resposta.
- · A estrutura a analisar resulta da estrutura analisada na iteração anterior, após a remoção das ligações em rotura.

Resultados

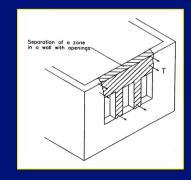
Mecanismo de Colapso

Docultodos

1ª Iteração γ_{sis}=0,25

 2^a Iteração γ_{sis} =0,25

 3^a Iteração γ_{sis} =0,25

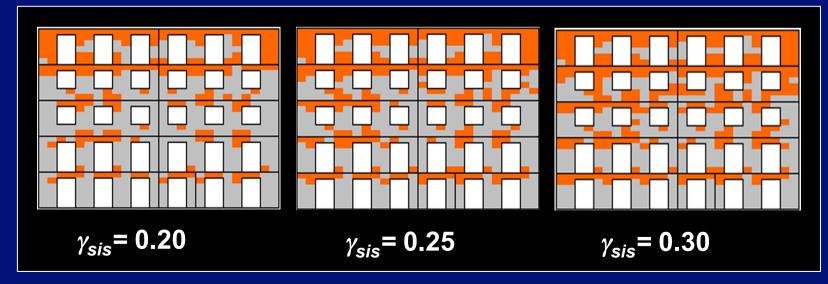

 $\gamma_{sis}^{máx} = 0,25$

Sismo de 9 de Julho de 1988 Fotografias tiradas na Horta -Açores, 2001

- . Efeito dominó: rotura sequencial das ligações
- . Rotura das ligações dos pavimentos e dos elementos de frontal perpendiculares à fachada da frente para o 4° e 5° Pisos

[Crossi, 1988]

Vulnerabilidade sísmica

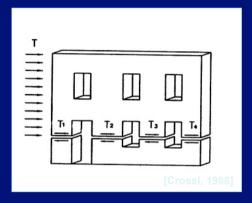


Cálculo de danos para intensidades crescentes da acção sísmica

$$F_{sd} = F_{CQP} \pm \gamma_{sis} F_{E}$$

γ máx Sis Intensidade da Acção Sísmica de COLAPSO

Mapas de danos na alvenaria: Fachada da Frente


Danos na alvenaria devido a tracção - Fachada da frente

Mecanismo de Corte na Base

Resultados

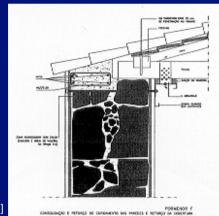
COLAPSO GLOBAL:

Rotura por corte da totalidade dos elementos verticais da fachada da frente no piso térreo, excepto os elementos de canto

Influência da resistência da alvenaria na ligação fachada-empena

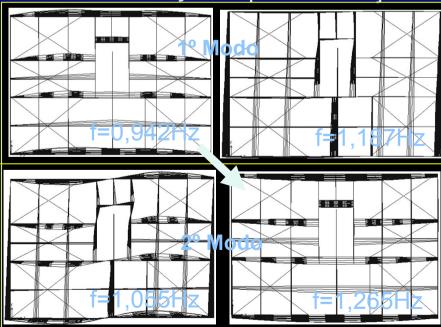
$$\gamma_{sis}^{máx} = 0.35$$

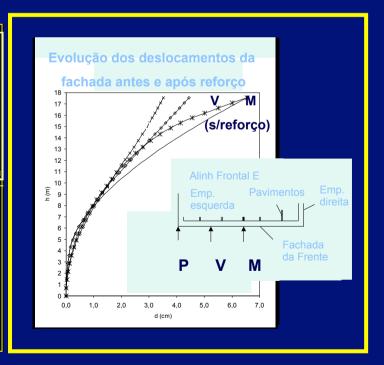
Mecanismo de Colapso idêntico ao observado para o edifício-exemplo


Solução de Reforço

Reforço

REFORÇO:


Viga de BA (0,6mx0,25m) construída no topo do edifício, ao longo de todo o perímetro exterior

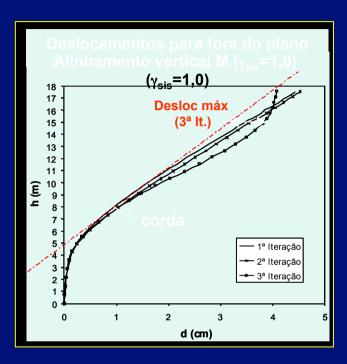


[Costa e Vasconcelos, 2001]

Aumento da rigidez da fachada a movimentos para fora do plano

Antes do Reforço Após o Reforço

Mecanismo colapso após reforço



Reforço

1ª Iteração
$$\gamma_{sis}$$
=0,45
2ª Iteração γ_{sis} =0,45
3ª Iteração γ_{sis} =0,45

$$\gamma_{\rm sis}^{\rm máx} = 0.45$$

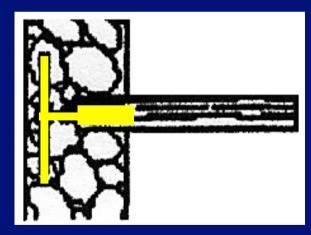
Destacamento da fachada um piso abaixo do observado antes do reforço: **Efeito de pipa**

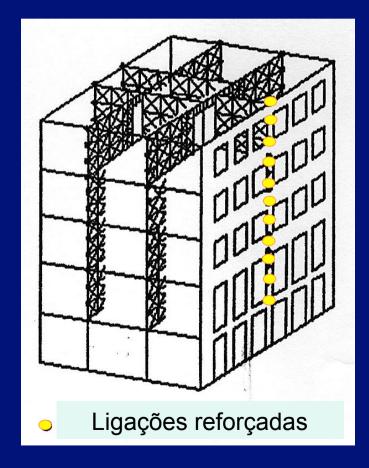
Mecanismo de Corte na Base após reforço Rotura idêntica à observada antes do reforço

$$\gamma_{sis}^{máx} = 0,60$$

Reforço

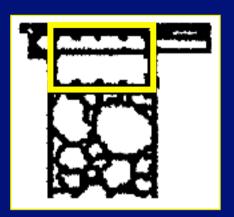
Síntese dos resultados

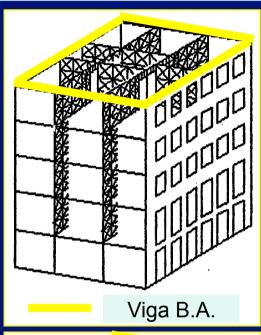



Reforço

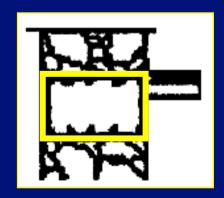
O destacamento das fachadas só pode ocorrer depois da rotura das ligações às paredes de alvenaria exteriores.

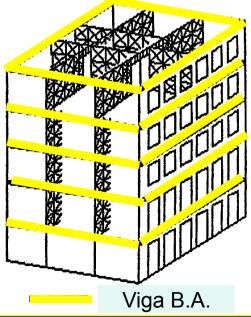
Solução 1 Reforçar as ligações gaiola-fachadas


Conectores Metálicos

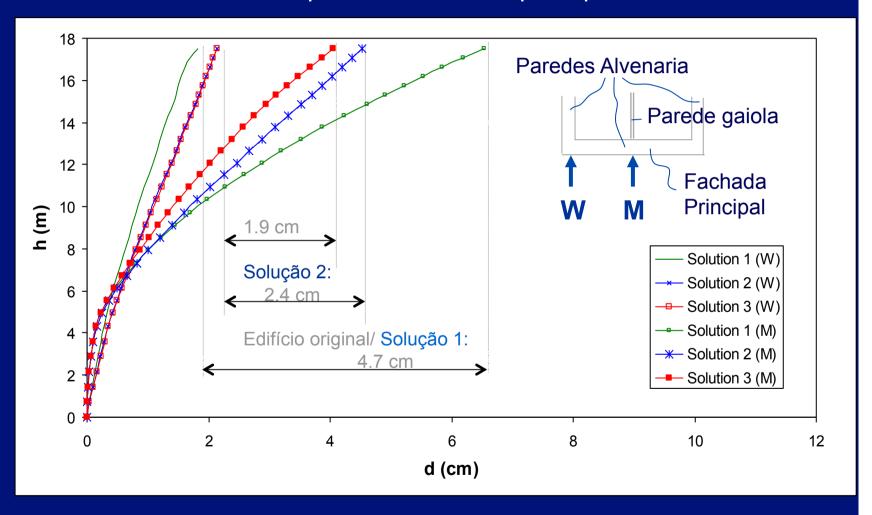


Reforço


Solução 2 Viga de B.A. (0.4×0.25m²) no topo


Viga à volta do perímetro exterior

Solução 3 Vigas de B.A. (0.4×0.25m2) em todos os pisos


Vigas ao nível dos pisos

Reforço

Deslocamentos fora do plano da fachada principal

As soluções onde as vigas de B.A. são usadas (2,3) reduzem os movimentos fora do plano da fachada.

Reforço

Aumento da rigidez global devido à inserção das vigas de B. A.

Modo	Edifício Original / Solução 1		Edifício Original / Solução 2		Edifício Original / Solução 3	
	f [Hz]	Modos	f [Hz]	Modos	f [Hz]	Modos
1	0.942	Translacção perpendicular à fachada	1.187	Translation parallel to the front façade	1.280	Translation parallel to the front façade
2	1.055	Translation parallel to the front façade with torsion	1.265 p	Translacção erpendicular à fachada	1.325 	Translacção perpendicular à fachada

Mais relevante na direcção perpendicular à fachada

Y sis

Reforço

Derrubamento das Fachadas

Corte Basal

Para todas as soluções de reforço analisadas

Mecanismo Colapso	Original	Solução 1	Solução 2	Solução 3
Derrubamento das Fachadas	0.25	0.60	0.45	0.50
Corte Basal	0.70	0.70	0.60	0.55
Aumento resistência relativamente Original		140%	80%	100%

O mecanismo de colapso é ainda o derrubamento da fachada principal Para a solução 3 a resistência a ambos os mecanismos é semelhante

Alterações Estruturais

Alterações

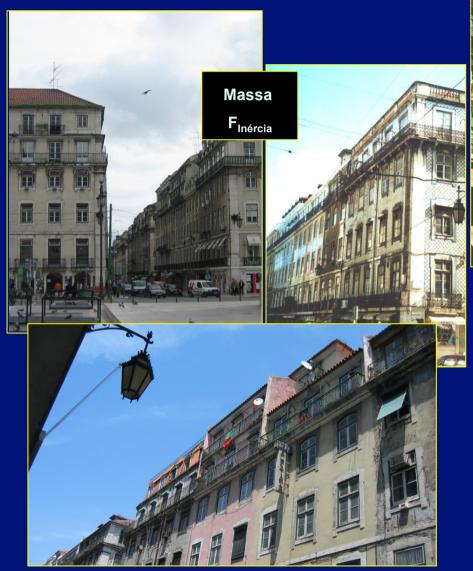
Remoção de paredes interiores e introdução de elementos
 estruturais com rigidez diferente
 Redistribuição de esforços

• Abertura de montras

Corte Basal

Circulação de pessoas

Continuidade interrompida


Continuidade mantém-se

Alterações Estruturais

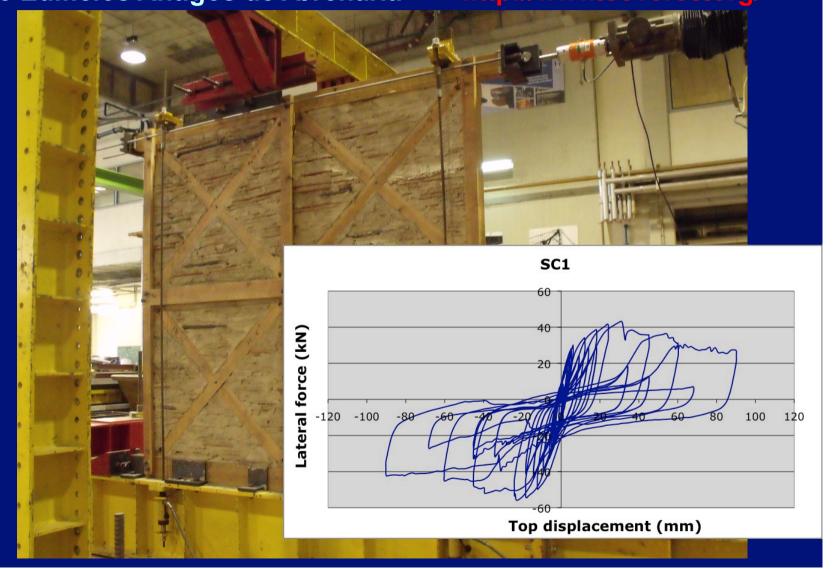
Alterações

• Aumento do número de pisos

Corte Basal

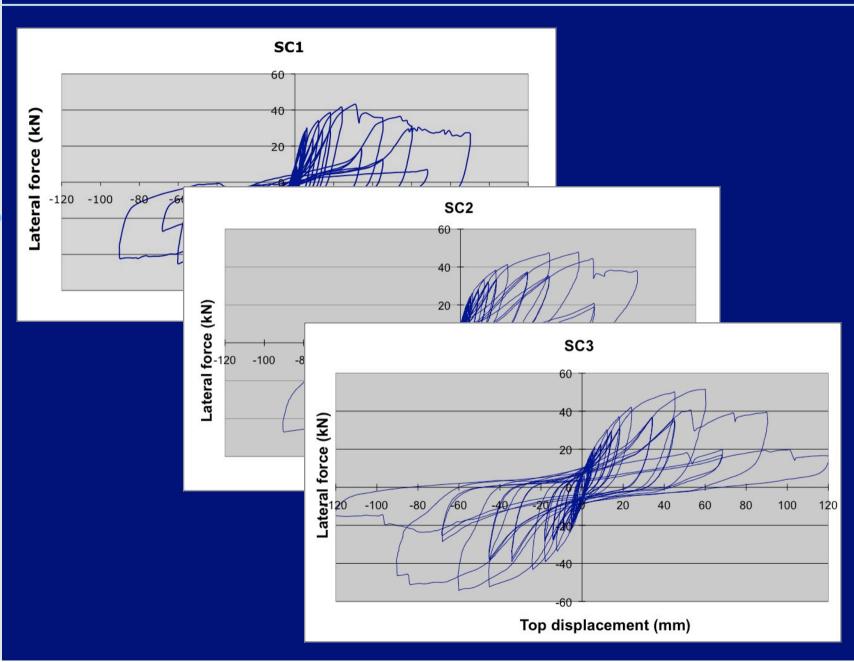
Alterações Estruturais

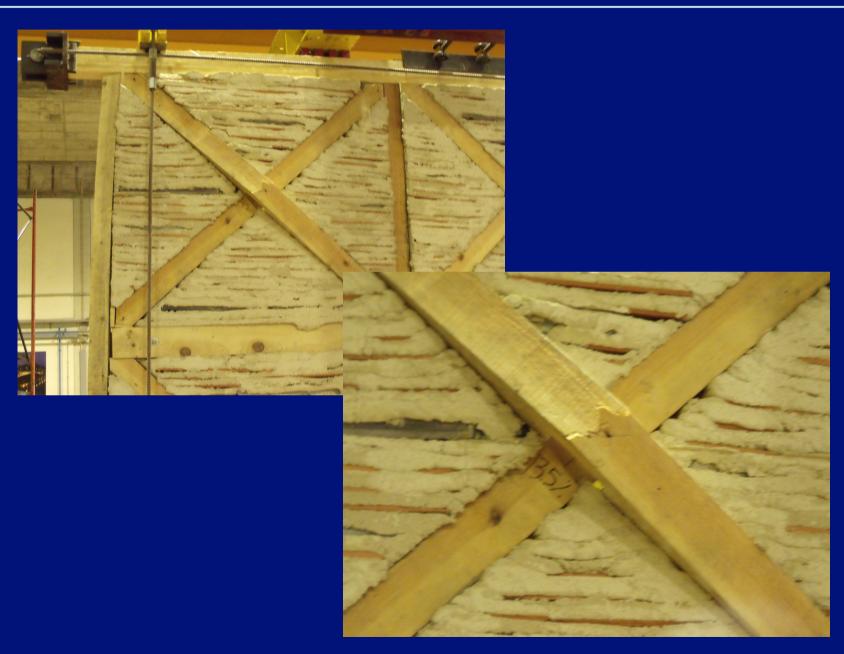
Alterações


• Danificação dos frontais para a instalação de canalizações

Investigação

 Projecto FCT PTDC/ECM/100872/2008, Vulnerabilidade Sísmica de Edifícios Antigos de Alvenaria http://www.severes.org/



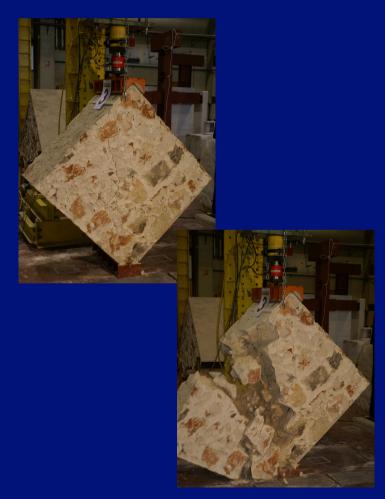


Investigação

DIAGONAL COMPRESSION TEST

Parede de argamassa de cal hidráulica

Parede de argamassa de cal aérea


Investigação

MODO DE COLAPSO

Parede de argamassa de cal hidráulica

Parede de argamassa de cal aérea

Investigação

COMPRESSION TEST

Parede de argamassa de cal hidráulica

Parede de argamassa de cal aérea

Investigação

More at:

www.severes.org

Regulamentação existente

- Legislação existente omissa quanto à obrigatoriedade do reforço sísmico em edifícios existentes;
- •Regulamentos sísmicos estão vocacionados para novas construções;
- Encontra-se em fase de adopção o novo EC8 e da parte 3, que se reporta a edifícios existentes.

Regulamentação Internacional

Regulamento Italiano. Regulamento de transição até à aplicação do EC8;

Documentos nos EUA. Várias entidades a produzir documentação. Plano de mitigação de risco sísmico existe desde 1970.

Etapas de estudo para um edifício existente,

É composto por um corpo de aplicação geral complementado com os anexos referentes a diferentes tipos de estruturas.

Anexo A – estruturas de betão armado

Anexo B – estruturas de aço

Anexo C – estruturas de alvenaria

Metodologia para avaliação e reabilitação sísmica de um edifício existente

1 - Recolha de informação do edifício_

2 – Selecção do nível de segurança (exigência de desempenho).

1.1 – Definição do nível de conhecimento

3 – Escolha do método de análise.

1.2 - Factor de confiança

3.1 – Elaboração do modelo numérico.

4 – Análise e avaliação de resultados

5 – Decisão de intervenção estrutural

SIM

6 – Dimensionamento da solução de reabilitação

1 - Recolha de informação do edifício

• Informações de carácter geral e história do edifício

• Dados dos edifício (Geometria, Detalhes construtivos e

estruturais, Materiais)

Geometria

Nível de conhecimento

Conheci- mento	Para cada tipo de elemento principal	
	Detalhes (Inspecções)	Materiais (Testes)
Limitado	20%	1 por piso
Extenso	50%	2 por piso
Completo	80%	3 por piso

Factor de	
confiança	4

Nível de conhecimento do edifício		Factor de confiança
KL1	Limitado	1.35
KL2	Normal	1.20
KL3	Extenso	1.00

Eurocódigo 8 – Parte 3

Nível de conhecimento	Geometria	Detalhes	Materiais
KL1 - Limitado	Full survey (exame total)	Inspecções Iimitadas in situ Ou Detalhes similares na época de construção	Testes limitados in situ ou Valores usuais na época da constr.
KL2 - Normal	Ou Desenhos originais de construção com	Inspecções extensas in situ ou Desenhos de constr. Incompletos + insp. limitadas	Testes extensos in situ ou Especificações do cálculo inicial + testes limitados
KL3 - Extenso	exame visual	Inspecções completas in situ ou Desenhos de constr. Detalhados + insp. limitadas	Testes completos in situ ou Relatório de testes originais + testes limitados

Eurocódigo 8 – Parte 3

2- Selecção do nível de segurança

A selecção do nível de segurança está relacionado com a definição da <u>exigência de desempenho</u>, que corresponde ao nível de danos máximo que se pretende que a estrutura apresente quando sujeita a um determinado nível de acção sísmica.

O nível de danos é garantido com a verificação de determinados estados limites.

Estados Limite	Descrição	Acção sísmica
Estado Limite de Colapso Eminente (Near collapse)	Danos próximos do colapso. Exploração completa da capacidade de deformação dos elementos estruturais.	2475 anos, 2% de prob. de exceder em 50 anos
Estado Limite de Danos severos (Significant Damage)	Danos significativos. A estrutura ainda pode suportar acções sísmicas de intensidade moderada.	475 anos, 10% de prob. de exceder em 50 anos
Estado Limite de Danos Limitados (<i>Damage Limitation</i>)	panos Limitados mantêm capacidades resistentes. A estrutura não	

3 - Escolha do método de análise

Métodos Lineares Análise estática linear (Forças laterais);

Análise dinâmica linear - modal por espectro

resposta elástico;

Métodos Não lineares Análise estática não linear (*Pushover*);

Análise dinâmica não linear (*Time history*);

Recurso ao coeficiente de comportamento (*q-factor approach*) com análises lineares (espectro de resposta reduzido).

Linear vs. Não linear?

Estática vs. Dinâmica?

Eurocódigo 8 – Parte 3

Método de análise	Modelação da acção sísmica	Condições de aplicabilidade
Análise estática linear		 i. Critérios dados pelo EC8 – parte 1 relativamente às análises
(Forças laterais)		lineares (4.3.3.2 para forças laterais ou 4.3.3.3 para análise
	Espectro de resposta elástico S _c (T),	modal)
	definido no ECS — parte 1, secção	ii. ρ _{max} /ρ _{min} < 2,5
Análise modal por espectro	3222.	em que ρ _{max} e ρ _{min} são os valores máximos e mínimos de
resposta		ρi = Di/Ci, para todos os elementos dúcteis em que ρi > 1.
		iii. Capacidade > Efeitos, em todos os elementos frágeis.
Análise estática não linear	Espectro de resposta elástico S _c (T),	 Caso não se verifiquem os critérios para a utilização das
(Pushover)	definido no EC8-parte 1, 3222.	análises elásticas.
Análise dinâmica não	Acelero gramas.	 Critérios dados pelo EC8 – parte 1 relativamente às análises
linear (Time history)		não lineares.
	Espectro de resposta de projecto	Critérios dados pelo EC8 - parte 1 relativamente às análises
q-factor approach	S _d (T), para análise elástica, de	lineares (4.3.3.2 para forças laterais ou 4.3.3.3 para análise
	acordo com EC8 - parte 1, 3.2.2.5.	modal)

Prática corrente II Métodos Lineares

- + simples
- + rápidos
- + conhecidos
- Capacidade computacional

Aplicabilidade de métodos lineares

No geral:

- Critérios de regularidade em planta e altura (EC8, parte1);
- Condições complementares indicadas no quadro anterior.

Em particular para edifícios de alvenaria:

- Pisos a funcionarem como diafragmas (não se verifica para a grande maioria dos edifícios existentes de alvenaria);
- Pisos em faces opostas de uma parede comum encontram-se à mesma cota;
- Em cada piso, o coeficiente entre a rigidez lateral da parede principal mais rígida e a parede principal mais fraca não excede 2,5.

3.1 – Elaboração do modelo numérico

- Simular características e comportamento estrutural real;
- Nível de conhecimento para KL1 Modelo Linear;
- Regularidade em planta possível modelos planos;
- •Efeitos de torção;
- Elementos Secundários;
- Valores médios para as propriedades dos materiais;
- Paredes de alvenaria considerar ½ rigidez elástica

4 - Análise e avaliação de resultados

Análise de resultados

- Resultados obtidos da análise efectuada ao modelo numérico:
- Redistribuição de esforços quando possível e necessário;
- Ajustes nos resultados dependendo do estado Limite a verificar.

Verificações de segurança

Exigências < Capacidades

Estrutura no Global

•Controle de deslocamentos globais;

Controle de corte na base.

Elementos Particulares

- Controlo de rotações e deslocamentos relativos;
- Controlo de tensões.

Eurocódigo 8 – Parte 3

Verificação da segurança em edifícios de alvenaria existentes

Estado Limite	Verificações necessárias	Critérios	
		Exigências < Capacidades	
		Exigências	Capacidade resistente
	Estrutura global	Deslocamento no topo do edif.	Deslocamento último (1)
De Colapso	Em paredes de alvenaria		Drift = 4/3 x 0,008H ₀ /D (elem. primários) (2)
Eminente	caso $V_{\text{EM}} < V_{\text{EV}}$	Deslocamentos nas paredes	$Drift = 4/3 \times 0,012H_0/D$ (elem. secundários)
	Em paredes de alvenaria		$Drift = 4/3 \times 0,004$ (elem. primários)
	caso $V_{\rm fM} > V_{\rm fV}$		Drift = 4/3 x 0,006 (elem. secundários)
	Estrutura global	Deslocamento no topo do edif.	3/4 deslocamento último
De Danos	Em paredes de alvenaria		Drift = 0,008H ₀ /D (elem. primários)
Severos	caso $V_{\text{EM}} < V_{\text{EV}}$	Deslocamentos nas paredes	$Drift = 0,012H_0/D$ (elem. secundários)
	Em paredes de alvenaria		Drift = 0,004 (elem. primários)
	caso V _{EM} > V _{EV}		Drift = 0,006 (elem. secundários)
		Anális e linear	
	Estrutura global	Esforços de corte na base	Resistência ao corte na base (total)
		Análise não linear	
De Danos		Deslocamento no topo do edif.	Deslocamento de cedência (3)
Limitados	Em paredes de alvenaria		Drift = 0,008H ₀ /D (elem. primários)
	caso $V_{\rm EM} < V_{\rm EV}$	Des lo camentos nas paredes	Drift = 0,012H ₀ /D (elem. secundários)
	Em paredes de alvenaria		Drift = 0,004 (elem. primários)
	caso V _{EM} > V _{EV}		Drift = 0,006 (elem. secundários)

5 - Decisão de intervenção estrutural

Influenciada por:

- Tipo e nível de danos iniciais apresentado pela estrutura;
- Resultado da avaliação sísmica efectuada;
- Relação Custo-Benefício da intervenção em termos económicos, sociais, tempo de interrupção de utilização durante intervenção.

Critérios técnicos para a escolha:

- Corrigir os maiores problemas (danos);
- Melhorar a regularidade em planta e altura;
- Aumentar a Ductilidade local ou global;
- * Aumentar a resistência local ou global, sem diminuir a ductilidade global.

6 - Dimensionamento da solução de reabilitação

Deve incluir os seguintes passos:

1. Concepção — Da solução de reparação e/ou reforço

2. Análise Com execução de modelo numérico e escolha de método de análise

3. Verificações — Da segurança para a estrutura no Global e para os Elementos isolados

No Anexo C do EC8 é apresentada uma listagem de soluções de reforço com uma abordagem qualitativa. Permite uma visão alargada das diversas técnicas de intervenção. Esta listagem pode ser vista como uma base de trabalho não invalidando outras soluções, que melhor se adequam ao caso de estudo. De facto nova soluções são continuamente estudadas e aplicadas ao longo dos anos.

Comentários:

Nível de conhecimento KL1 Só Análises Lineares

Pavimentos de madeira Piso flexível Só Análises não lineares

Edifícios antigos com pavimentos de madeira

Obrigatoriamente Análises n<u>ã</u>o Lineares

Nível de conhecimento KL2 ou KL3

Mais caro

Maiores danos impostos

Maior nº de testes in situ

Regulamento Italiano

OPCM 3274 de Maio de 2003 - "Primi elementi in materia di criteri generali per la classificazione sísmica del territorio nazionale e di normative tecniche per le costruzioni in zona sísmica"

OPCM 3431 de Maio de 2005 - "Ulteriori modifiche ed integrazioni all'Ordinanza n.3274 del 20/3/2003".

Novo Regulamento Sísmico, documento de transição até a aplicação final do EC8 em Itália.

Baseado no EC8, remete para o capítulo 11 a avaliação e reforço de edifícios existentes.

Apresenta um anexo com elementos de cálculo complementares.

Regulamento Italiano

Alteração na necessidade de avaliar e na definição da acção sísmica

- 1) Ao contrário do EC8, define as condições que implicam a obrigatoriedade de aplicar o código:
 - Aumento do edifício em altura ou em planta;
 - Alteração do tipo de utilização do edifício, decorrente da intervenção, que envolva o aumento das cargas iniciais (permanentes e variáveis);
 - A execução de intervenções estruturais com vista a transformar o edifício noutro diferente do original;
 - A execução de intervenções estruturais que envolvam alterações substanciais no comportamento global do edifício (renovações, substituições de partes estruturais, etc.).
- 2) Para intervenções de reabilitação e de reforço que reduzam a vulnerabilidade, a acção sísmica pode ser reduzida até 65% da acção usada para estruturas novas.

Alteração na recolha de informação e níveis de conhecimento

- Testes Limitados in situ Levantamento Limitado in situ
- Características mecânicas dos materiais

Dados experimentais de outros edifícios

Correspondência entre materiais e detalhes do edifício em estudo

EC8, parte 1

Regulamento Italiano

Alteração no coeficiente de comportamento

Edifícios de alvenaria não reforçada;

regular em elevação $q = 2.0 \alpha_u/\alpha_1 = 2.8$ \longrightarrow 1.5 a 2.5

não regular em elevação $q = 1.5 \alpha_u/\alpha_1 = 2.7$ \longrightarrow 1.5 a 2.0

Em que α_u/α_1 é o OSR (coeficiente de sobreresistência), para o qual são sugeridos os seguintes valores:

• Edif de alvenaria não reforçada de um piso

 $\alpha_{\rm u}/\alpha_1 = 1.4$

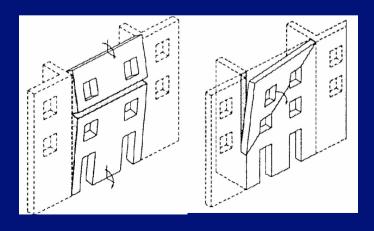
• Edif de alvenaria não reforçada de dois ou mais pisos

 $\alpha_{IJ}/\alpha_1 = 1.8$

EC8, parte 3 não dá indicação do valor de q a considerar para edifícios de alvenarias.

EC8, parte 1 não dá valores de α_u/α₁ para edifícios de alvenaria

Regulamento Italiano


Alteração na verificação da segurança

Considera somente dois Estados Limite:

- Estado Limite Último = Estado Limite de Danos Severos (EC8, parte 3)
- Estado Limite de Danos = Estado Limite de Danos Limitados

A avaliação da segurança é feita separadamente para acções no plano e fora do plano. No plano, tal como no EC8, considera 2 tipos de mecanismos de rotura: ao corte e à flexão

Fora do plano, considera a formação de um mecanismo de colapso local:

Verificação do primeiro modo de colapso – mecanismo local de rotura para fora do plano (anexo 11C);

Documentos Americanos

Standard ASCE/SEI 31-03, Seismic Evaluation of Existing Building que apresenta critérios e procedimentos para a avaliação sísmica de estruturas existentes,

Standard ASCE/SEI 41-06, Seismic Rehabilitation of Existing Buildings para a reabilitação dos edifícios existentes à acção sísmica,

Documento FEMA 547, Techniques for the Seismic Rehabilitation of Existing Buildings que apresenta uma compilação de técnicas de reabilitação sísmica incluindo pormenores, detalhes e indicações práticas bem como indicações sobre as técnicas adequadas para mitigar tipos específicos de anomalias em vários tipos de estruturas.

Documentos Americanos

Seguem uma filosofia baseada no desempenho da estrutura.

Apresentam os conceitos:

Objectivo de Reabilitação = Desempenho do edifício

+

Acção sísmica

Desempenho do edifício ou estado de danos que depende de:

- a) segurança dos ocupantes do edifício durante e após o sismo;
- b) custo e exequibilidade de repor o edifício nas condições existentes antes do sismo;
- c) o período de tempo durante o qual o edifício se encontra fora de serviço para efeitos de reabilitação e
- d) efeitos na comunidade em termos económicos, arquitectónicos ou históricos

Relações Custo-Benefício que podem ser a base de um programa de mitigação de risco sísmico.

Comentários Finais - Regulamentação

- Adopção do EC8 ANEXOS NACIONAIS;
- Metodologia do EC8 com alguns problemas. Devem ser resolvidos na elaboração dos Anexos Nacionais;
- Aprender com a evolução do Regulamento Italiano;
- Introduzir alguns conceitos dos Documentos Americanos (e.g. relações C-B, essenciais para a definição de um programa de mitigação de risco sísmico nacional);
- Adequar EC8 à realidade Nacional, tendo em conta as tipologias construtivas;
- Focar a Questão do efeito do Quarteirão e dos edifícios Mistos.

Referência Sugerida:

CASANOVA, S.; BENTO, R.; LOPES, M. **2011**: "Comparação de Regulamentação sobre Avaliação e Reforço Sísmico de Edifícios Antigos de Alvenaria", **Revista Internacional Construlink** (RIC), nº **26**, Vol. **9**, 48-63.

CONCEPÇÃO, MODELAÇÃO ESTRATÉGIAS DE REFORÇO E ANÁLISE SÍSMICA DE ESTRUTURAS ANTIGAS

Rita BENTO e Mário LOPES

IST, Lisboa, Maio 2011