Utilização de Elementos Finitos de Equilíbrio em Refinamento Adaptativo Orlando José Barreiros d'Almeida Pereira

ERRATA

página	local	onde se lê	deve ler-se
xii	$\hat{m{t}}_{0,(j),(i)}$	aplicadas	aplicada
13	expressão (2.21)	$\begin{bmatrix} \frac{1}{2} \frac{\partial^2}{\partial x^2} \\ -\frac{1}{2} \frac{\partial^2}{\partial x \partial z} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \frac{\partial^2}{\partial x \partial y} \\ -\frac{1}{2} \frac{\partial^2}{\partial y \partial z} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \frac{\partial^2}{\partial x \partial z} \\ \frac{1}{2} \frac{\partial^2}{\partial z^2} \end{bmatrix}$	$\begin{bmatrix} -\frac{1}{2} \frac{\partial^2}{\partial x \partial z} \\ \frac{1}{2} \frac{\partial^2}{\partial x^2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \frac{\partial^2}{\partial y \partial z} \\ -\frac{1}{2} \frac{\partial^2}{\partial x \partial y} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \frac{\partial^2}{\partial z^2} \\ -\frac{1}{2} \frac{\partial^2}{\partial x \partial z} \end{bmatrix}$
18	penúltima linha	W	W*
27	expressão (3.22)	$\boldsymbol{U}_{(i)}^{\scriptscriptstyle T} \! \boldsymbol{N}_{(j),(i)}^{\scriptscriptstyle T} \! \boldsymbol{\sigma}$	$oldsymbol{U}_{(i)}^{^{T}}oldsymbol{N}_{(j),(i)}oldsymbol{\sigma}$
33	último parágrafo		(2.26)
34	expressão (3.39)	$\frac{(2.23)}{\hat{\boldsymbol{e}}_0 - \hat{\boldsymbol{e}}_\theta - \hat{\boldsymbol{v}}}$	$\hat{\boldsymbol{e}}_0 + \hat{\boldsymbol{e}}_{\theta} - \hat{\overline{\boldsymbol{v}}}$
34	expressão (3.40)	$\hat{oldsymbol{e}}_{0,(i)} - \hat{oldsymbol{e}}_{ heta,(i)}$	$\hat{m{e}}_{0,(i)} + \hat{m{e}}_{\theta,(i)}$
35	expressão (3.42)	$-oldsymbol{D}_{(i)}oldsymbol{F}_{(i)}^{-1}\hat{oldsymbol{e}}_{ heta,(i)}$	$+ \boldsymbol{D}_{(i)} \boldsymbol{F}_{(i)}^{-1} \hat{\boldsymbol{e}}_{\theta,(i)}$
35	expressão (3.44)	$+oldsymbol{F}_{(i)}^{-1}\hat{oldsymbol{e}}_{ heta,(i)}$	
36	expressão (3.45)	x^3 $3x^2y$	$-\boldsymbol{F}_{(i)}^{-1}\hat{\boldsymbol{e}}_{\theta,(i)}$ $x^{3} 3x^{2}y$
		$3xy^2$ y^3	$3xy^2$ y^3
		$-3xy^2$ $-3x^2y$	$-3x^2y -3xy^2$
40	linha 8	para funções	para as funções
45	figura 3.2	E=1.0	E=10
59	expressão (4.50)	$+ \int_{\Gamma_{(j)}} \boldsymbol{M'}_{(j),(e)}^T \boldsymbol{v}_{e,(j)} d\Gamma = 0$	$= \int_{\Gamma_{(j)}} \boldsymbol{M'}_{(j),(i)}^T \boldsymbol{v}_{e,(j)} d\Gamma$
89	expressão (7.18)	$\left[n\left(\sum_{i=1}^{n}(\log(N_i))^2\right)\left(\sum_{i=1}^{n}\log(N_i)\right)^2\right]$	$\left[n\left(\sum_{i=1}^{n}(\log(N_i))^2\right)-\left(\sum_{i=1}^{n}\log(N_i)\right)^2\right]$
89	expressão (7.18)	$\left[m\left(\sum_{j=1}^{m}(\log(N_j))^2\right)\left(\sum_{j=1}^{m}\log(N_j)\right)^2\right]$	$\left[m \left(\sum_{j=1}^{m} (\log(N_j))^2 \right) - \left(\sum_{j=1}^{m} \log(N_j) \right)^2 \right]$
92	última linha	é sempre	pode ser
93	linha 22	é sempre	pode ser
99	expressão (8.22)	DΦ	dΦ
101	secção 8.6.5	8.2.5.2	8.6.2
115	penúltimo parágrafo	pode de ser	pode ser
122	expressão (9.27)	$\left\ rac{1}{2}oldsymbol{J}oldsymbol{I}_{e,(j)} ight\ _{I}^{2}$	$\left\ \frac{1}{2} \boldsymbol{J} \boldsymbol{I}_{e} \right\ _{I,(j)}^{2}$
		$\left\ \frac{1}{2}\boldsymbol{J2}_{e,(j)}\right\ _{I}^{2}$	$\left\ rac{1}{2}oldsymbol{J2}_{e} ight\ _{I,(j)}^{2}$

122	expressão (9.29)	$\left\ \frac{1}{2}\boldsymbol{J}\boldsymbol{I}_{e,(j)}\right\ _{I}^{2}$	$\left\ \frac{1}{2} \boldsymbol{J} \boldsymbol{I}_{e} \right\ _{I,(j)}^{2}$
122	penúltimo parágrafo	$\left\ \boldsymbol{J2}_{e}\right\ _{I,(k)}^{2}$	$\left\ \frac{1}{2} \boldsymbol{J2}_{e} \right\ _{I,(j)}^{2}$
123	expressão (9.31)	$\left\ \frac{1}{2}\boldsymbol{J}\boldsymbol{I}_{e,(j)}\right\ _{I}^{2}$	$\left\ rac{1}{2}oldsymbol{J}oldsymbol{I}_{e} ight\ _{I,(j)}^{2}$
123	segundo parágrafo	$\left\ \boldsymbol{J2}_{e}\right\ _{I,(k)}^{2}$	$\left\ \frac{1}{2} \boldsymbol{J2}_{e} \right\ _{I,(j)}^{2}$
124	expressão (9.33)	$\left\ rac{1}{2}oldsymbol{J}oldsymbol{I}_{e,(j)} ight\ _{I}^{2}$	$\left\ \frac{1}{2} \boldsymbol{J} \boldsymbol{I}_{e} \right\ _{I,(j)}^{2}$
124	expressão (9.34)	$\left\ rac{1}{2}oldsymbol{J2}_{e,(j)} ight\ _{I}^{2}$	$\left\ \frac{1}{2} \boldsymbol{J2}_{e} \right\ _{I,(j)}^{2}$
151	linha 7	vértices	vértices.
161	linha 7	grau imediatamente	grau superior a zero e imediatamente
185	linha 28	dessa	dessas
		RHEINBOLT	RHEINBOLDT