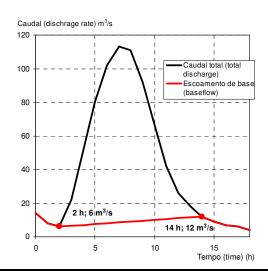
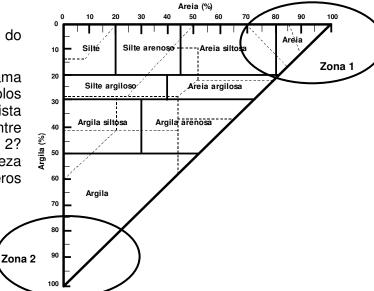
MODELAÇÃO HIDROLÓGICA


Exemplos de perguntas de exame

1) A curva de recessão do escoamento de base descrita por Horton tem a seguinte equação:


$$Q(t) = Q_0 e^{-\frac{t-t_0}{k}}$$

- Indique o significado de cada uma das variáveis intervenientes na anterior expressão.
- Pretende-se determinar k com base no conhecimento de sucessivos hidrogramas de cheia numa secção de um curso de água e dos acontecimentos pluviométricos sobre a correspondente bacia hidrográfica de que resultaram aqueles hidrogramas. Diga como procederia para determinar k, referindo e justificando o critério que lhe permitiria seleccionar os hidrogramas de cheias que poderia utilizar naquela determinação. Inclua na sua resposta uma esquema
- 2) Considere o hidrograma de cheia definido na tabela e na figura que se seguem, referente a uma bacia hidrográfica com a área de 58 km². Admita que o escoamento direto se inicia às 2 h e que termina às 14 h. Entre os dois anteriores tempos o caudal correspondente ao escoamento de base varia linearmente, como se representa na figura.
- Diga o que entende por escoamento de base e por escoamento direto?
- Sabendo que a precipitação total que originou a cheia em causa teve a duração de 5.0 h e a intensidade constante de 9 mm/h, determine o valor do índice φ (mm/h) representativo das perdas de precipitação. Se considerar necessário poderá indicar na tabela alguns dos cálculos que efetuar.

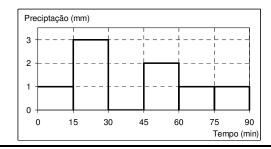
Tempo	Caudal total				
(h)	(m ³ /s)				
0	14				
1	8				
2	6				
3	22				
4	52				
5	80				
6 7	102				
	113 111				
8					
9	92 66				
10					
11	42				
12	26				
13	18				
14	12				
15	9				
16	7				
17	6				
18	4				

- O que entende por classificação dos solos do ponto de vista hidrológico.
- Na figura ao lado apresenta-se o diagrama triangular com a classificação dos solos quanto à textura. Do ponto de vista hidrológico, qual a principal diferença entre um solo na zona 1 e outro na zona 2? Justifique e refira a ordem de grandeza relativa (maior, menor ou igual) dos números de escoamento.

4) Para um dado período de retorno, T, são conhecidos os parâmetros α e β da linha de possibilidade udométrica que relaciona a precipitação intensa, P (mm) com a respetiva duração, t,

$$P = \alpha t^{\beta}$$

Para caracterizar a cheia, com período de retorno, T, numa secção de um curso de água pretende-se utilizar o programa HEC-HMS, aplicando, para o efeito, o hidrograma unitário do SCS à precipitação P_{tc} fornecida pela linha de possibilidade udométrica para a duração igual ao tempo de concentração, tc, da bacia hidrográfica relativa àquela secção.


- Nessas circunstâncias, qual dos seguintes dois hietogramas relativos à precipitação Ptc se espera conduzir a um maior caudal de ponta de cheia:
 - hietograma para precipitação com intensidade uniforme durante to;
 - hietograma de três blocos alternados, cada bloco com duração de tc/3?
- Diga como estabeleceria o hietograma de três blocos alternados.
- Represente, num mesmo diagrama cronológico (t,P) e de modo qualitativo, os hietogramas para precipitações com intensidade uniforme e com três blocos alternados. Justifique a sua representação.
- 5 Considere a seguinte curva intensidade-duração-frequência (curva IDF) relativa ao período de retorno de 5 000 anos, aplicável a uma bacia hidrográfica a que corresponde o tempo de concentração de 1,5 h:

$$i = 850 t^{-0.51}$$

Na anterior equação i vem expresso em mm/h e t, em min.

Tendo em vista dimensionar o descarregador de cheias de uma albufeira, pretende-se estabelecer os hidrogramas da cheia afluentes à albufeira para durações da precipitação igual e tripla do tempo de concentração.

- Nas anteriores condições discuta e justifique se devem ou não ser considerados hietogramas uniformes. De preferência, inclua na sua resposta uma figura que represente qualitativamente as configurações relativas dos hidrogramas de cheia associadas a hietogramas uniformes e não uniformes. Fundamente a sua resposta num dado tipo de hietograma não uniforme, à sua escolha.
- Considerando nulas as perdas de precipitação, construa o hietograma de quatro blocos alternados.
- Acha aceitável que, no caso em estudo, se desprezam as perdas de precipitação? Justifique.
- 6a) Refira a que se aplica o método do índice ϕ .
- **6b**) Numa bacia hidrográfica com a área de 80 km² registou-se o volume do escoamento direto de 160 000 m³ na sequência do acontecimento pluvioso representado na figura seguinte. Proceda à estimativa do valor do índice φ. Inclua na resposta os cálculos que efetuou.

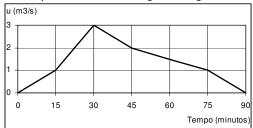
7) A equação que exprime o modelo de Green e Ampt para a infiltração acumulada é dada por:

$$F = Kt + (\eta - \theta i) \Psi \ln \left[1 + \frac{F}{(\eta - \theta i) \Psi} \right]$$

- Enuncie os pressupostos do modelo de Green e Ampt.
- Explicite o significado das variáveis intervenientes na anterior equação.

8)

- **a)** Identifique os parâmetros fisiográficos que intervêm na síntese do hidrograma unitário sintético do *Soil Conservation Service*.
- **b)** Caracterize sinteticamente o hidrograma unitário instantâneo de Clark, incluindo na resposta a menção às componentes consideradas naquele hidrograma e aos procedimentos adoptados na respectiva modelação.
- 9) A tabela seguinte contém os caudais iniciais da cheia que teve lugar na secção de referência de uma bacia hidrográfica na sequência de um acontecimento pluviométrico com duração de 3 h e com intensidade efectiva constante (valor da precipitação efectiva de 3P, sendo P a precipitação efectiva numa hora). A área e o tempo de concentração da bacia hidrográfica são 330 km² e 5 h, respectivamente.


Tempo (h)	Caudal (m ³ /s)			
0	0			
1	25			
2	100			
3	200			
4	225			
5	175			
6				
7				
8				
9				
10				

- Complete o hidrograma de cheia. Para o efeito:
 - tenha em conta o significado de tempo de concentração;
 - recorra à teoria do hidrograma unitário e obtenha o hidrograma unitário para a duração de 1 h e para a precipitação efectiva P, para o que deverá atender à relação entre os números de ordenadas não nulas do hidrograma do escoamento directo, do HUD e de blocos do hietograma da precipitação efectiva.

Justifique, quando pertinente, os cálculos que efectuar.

- Qual a precipitação efectiva associada ao hidrograma unitário?
- Obtenha o hidrograma unitário para a precipitação efectiva unitária com duração também de uma hora.
- **10)** Diga a que se destina o método de Muskingum. Identifique e caracterize os tipos de armazenamento considerados por tal método na resolução da equação da continuidade.
- 11) Descreve sucintamente o modelo do hidrograma unitário instantâneo de Clark.

- 12) Qual a utilidade de se dispor de procedimentos de otimização no programa HEC-HMS.
- 13) Para uma dada bacia hidrográfica obteve-se o hidrograma unitário para a duração de 15 minutos da precipitação efectiva de 1 mm representado na figura seguinte.

Sabendo que a área da bacia hidrográfica é de 7,65 km², verifique, expeditamente, se tal HU se pode considerar correcto.

14) A curva em S correspondente ao um dado hidrograma unitário é apresenta na tabela seguinte, tendo-se, para o efeito, especificado os pares de valores (tempo, caudal) em intervalos de tempo sucessivos de 5 minutos.

Curva em S

	<u> </u>
Tempo	Caudal
(minutos)	(m³/s)
0	0,00
5	0,33
10	0,67
15	1,00
20	2,00
25	3,00
30	4,00
35	4,67
40	5,33
45	6,00
10 15 20 25 30 35 40	0,67 1,00 2,00 3,00 4,00 4,67 5,33

Tempo	Caudal		
(minutos)	(m ³ /s)		
50	6,50		
55	7,00		
60	7,50		
65	7,83		
70	8,17		
75	8,50		
80	8,50		
85	8,50		
90	8,50		

Obtenha o hidrograma unitário para a duração de 20 minutos e para a precipitação efectiva unitária também de 1 mm. Não se esqueça de verificar se procedeu correctamente à obtenção este último hidrograma. Para o efeito, utilize o procedimento expedito da questão 5.

15) No programa HEC-2 as perdas de carga entre duas secções de um curso de água são calculadas por

$$h_e = L \overline{S}_f + C \left| \frac{\alpha_2 V_2^2}{2 g} - \frac{\alpha_1 V_1^2}{2 g} \right|$$

Explique o significado de cada uma das parcelas do segundo membro da anterior igualdade e refira como se pode estimar \overline{S}_f .

16) Indique o significado de VAL. Calcule o correspondente valor para o projeto a que se referem os custos de investimentos e as receitas caracterizados na figura e a tabela seguintes. Considere a taxa de atualização de 6%.

I-1 	 	? 			¹⁴	l					
 	 	R I	R	R	R	R	R	R ,	R	R	R
-2	-1	0 1	2	3	4	5	6	7	8	9	10

Ano	Investimento	Receitas
(year)	(investments)	(incomes)
	(10 ³ euros)	(10 ³ euros)
-2	100	
-1	80	
1		40
2		40
3		40
4	60	40
5		40
6		40
7		40
8		40
9		40
10		40

17) De entre os métodos de dimensionamento de albufeiras que conhece escolha um e descrevo-o de modo sucinto.