
➤ Métodos estatísticos (✓) Caudais de ponta de cheia ➤ Fórmulas empíricas (√) ➤ Modelo do hidrograma unitário (√) Caudais de ponta de cheia e hidrogramas de cheias BACK BONE OF HYDROLOGY

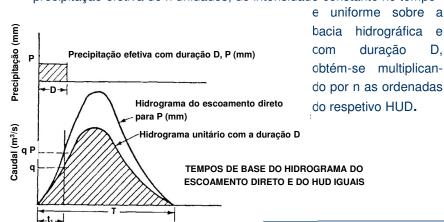
Métodos de avaliação de caudais e de hidrogramas de cheia

Cheias em rios

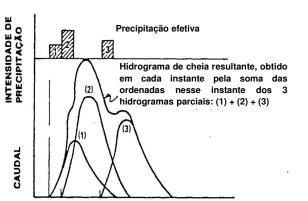
MODELO DO HIDROGRAMA UNITÁRIO, HUD

O modelo do HUD permite obter caudais de ponta de cheia e hidrogramas de cheia resultantes de precipitações efetivas com intensidade constante ou não ... variabilidade temporal da precipitação.

duração D da precipitação efetiva, HUD, é o hidrograma do precipitação efetiva, considerada unitária, com intensidade constante tempo uniforme sobre toda a hidrográfica e com duração D.

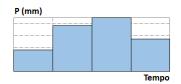

o hidrograma unitário para a escoamento direto provocado numa secção de um curso de água por uma aproximadamente bacia

Cheias em rios - modelo do hidrograma unitário


HIDROLOGIA E RECURSOS HÍDRICOS (3º ano. 2º semestre - 2018/2019) ----- (

A aplicação da teoria do hidrograma unitário fundamenta-se em dois princípios:

Princípio da proporcionalidade: o hidrograma do escoamento direto provocado numa dada secção de um curso de água por uma precipitação efetiva de n unidades, de intensidade constante no tempo


Princípio da sobreposição: o hidrograma do escoamento direto provocado numa secção de um curso de água pela sucessão de vários acontecimentos de precipitação efetiva, cada um com a mesma duração D e com intensidade constante e uniforme sobre a bacia

hidrográfica, obtém-se pela sobreposição, com o devido desfasamento no tempo, dos hidrogramas que resultam, pelo princípio da proporcionalidade do HUD, daqueles sucessivos acontecimentos.

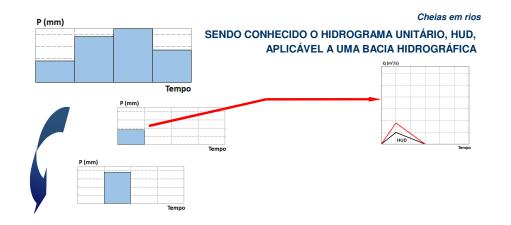
HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) -----

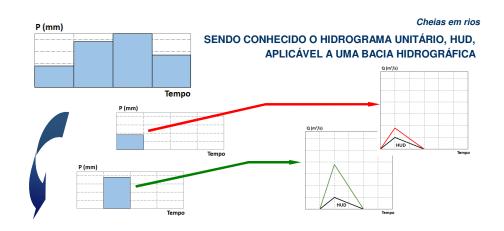
Cheias em rios

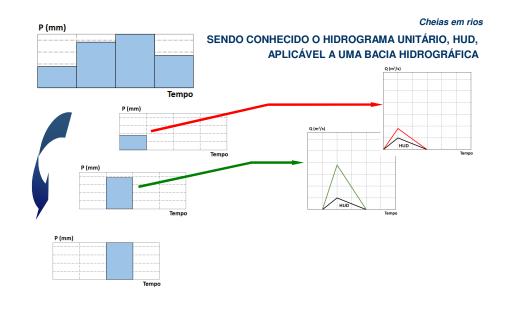
SENDO CONHECIDO O HIDROGRAMA UNITÁRIO. HUD. APLICÁVEL A UMA BACIA HIDROGRÁFICA

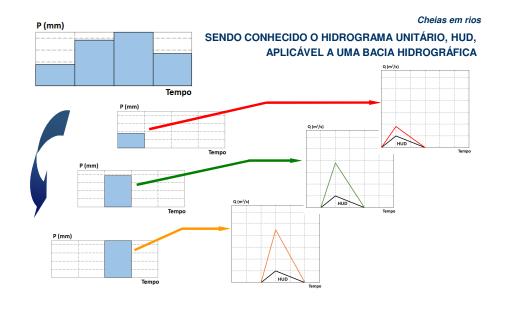
Cheias em rios

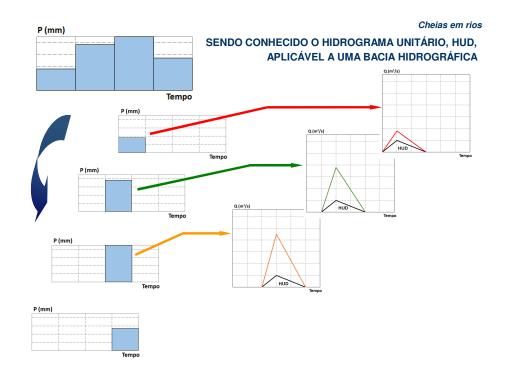


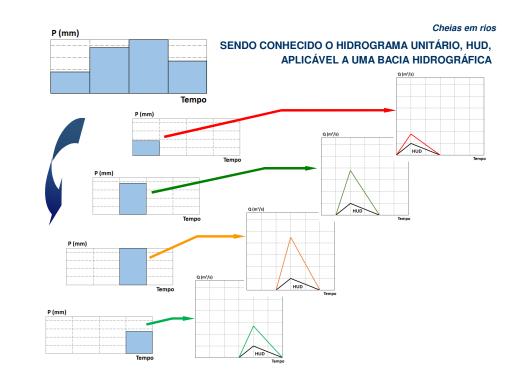

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) -

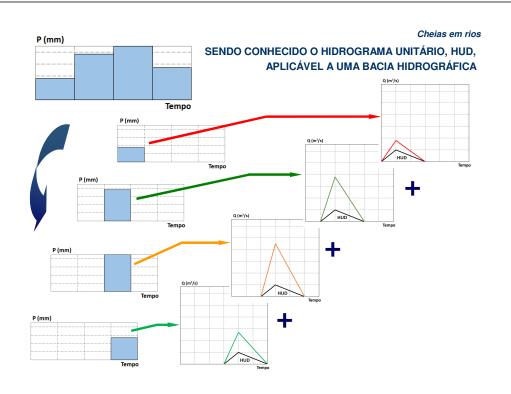

P (mm) Tempo

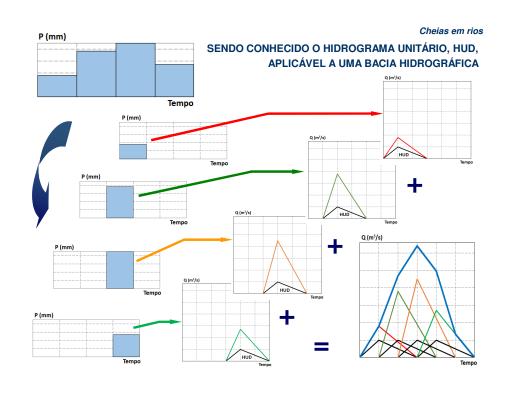


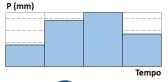

SENDO CONHECIDO O HIDROGRAMA UNITÁRIO, HUD, APLICÁVEL A UMA BACIA HIDROGRÁFICA

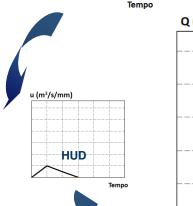


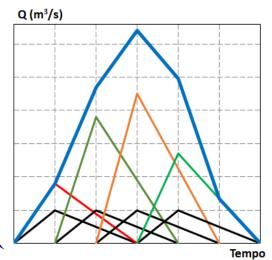












SENDO CONHECIDO O HIDROGRAMA UNITÁRIO, HUD, APLICÁVEL A UMA BACIA HIDROGRÁFICA

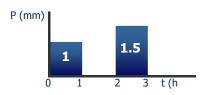
Tomp	Tempo		Hidro	gramas parce	elares	Qp
Тетпро	J	u	P=1.0 mm	P=0.0 mm	P=1.5 mm	
Unidades de D	(min)	(m ³ /s/mm)	(m ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)
0	0	0	0.0			0.0
1	60	3	3.0	0.0		3.0
2	120	1	1.0	0.0	0.0	1.0
3	180	0	0.0	0.0	4.5	4.5
4	240			0.0	1.5	1.5
5	300				0.0	0.0

Área da bacia hidrográfica:

A partir do HUD

 $A = 3600 \times (3+1) / 0.001 / 1000000 = 14.4 \text{ km}^2$

A partir do hidrograma de cheia resultante

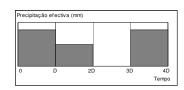

 $A = 3600 * (3.0 + 1.0 + 4.5 + 1.5) / (0.001 + 0.0015) / 1000000 = 14.4 \text{ km}^2$

Supor que o hidrograma unitário para a precipitação efetiva unitária de 1 mm com e para a duração D=1 h, HUD, é dado pela seguinte tabela.

Tempo	Caudal
(h)	(m ³ /s/mm)
0	0
1	3
2	1
3	0

Calcular o hidrograma de cheia para a precipitação efetiva de:

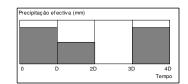
- a) de 3 mm com a duração de 1 h;
- b) definida pelo hietograma da figura seguinte.



HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ----- 18

Cheias em rios - modelo do hidrograma unitário

Intervalo	Precipitação
de tempo	efectiv a
0 - D	P1
D - 2D	P2
2D - 3D	0
3D - 4D	P3


HUD para P=1 mm

Princípio da proporcionalidade Princípio da sobreposição

Tempo	Ordenadas	Caudais	s do hidrogr	ama de che	ia corerspo	ondente ao escoamento directo (m³/s)
Теттро	HUD	H	lidrogramas	parcelares	s"	Hidrograma de cheia na secção de
(unidades		P1	P2	0	P3	referência da bacia hidrográfica
de D)	(m ³ /s/mm)	(mm)	(mm)	· · · (mm)· · ·	(mm)	(m ³ /s)
0	0	0		::::::::::::::::::::::::::::::::::::::		0
1	u1	P1 u1	0			P1 u1
2	u2	P1 u2	P2 u1	0		P1 u2 + P2 u1
3	u3	P1 u3	P2 u2	::::: Ø:::::	0	P1 u3 + P2 u2
4	u4	P1 u4	P2 u3	0	P3 u1	P1 u4+ P2 u3+ P3 u1
5	u5	P1 u5	P2 u4	$0 \cdots 0$	P3 u2	P1 u5 + P2 u4 + P3 u2
6	0	0	P2 u5	· · · · 0 · · · ·	P3 u3	P2 u5 + P3 u3
7	0	0	0	0	P3 u4	P3 u4
8	0	0	0	:::: 0::::	P3 u5	P3 u5
9	0	0	0	0::::	0	0

Cheias em rios - modelo do hidrograma unitário

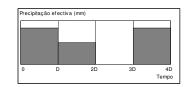
Intervalo	Precipitação
de tempo	efectiv a
0 - D	P1
D - 2D	P2
2D - 3D	0
3D - 4D	P3

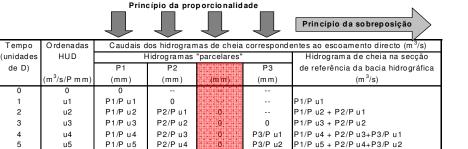
HUD para P mm

Princípio da proporcionalidade Princípio da sobreposição

Tempo	Ordenadas	Caudais d	los hidrogran	nas de cheia	correspond	entes ao escoamento directo (m³/s)
(unidades	HUD	H	lidrogramas	"parcelares"	Hidrograma de cheia na secção	
de D)		P1	P2		P3	de referência da bacia hidrográfica
	$(m^3/s/P m m)$	(mm)	(mm)	(m m)	(m m)	(m ³ /s)
0	0	0				
1	u1	P1/P u1	0			P1/P u1
2	u2	P1/P u2	P2/P u1			P1/P u2 + P2/P u1
3	u3	P1/P u3	P2/P u2	0:	0	P1/P u3 + P2/P u2
4	u4	P1/P u4	P2/P u3	0	P3/P u1	P1/P u4 + P2/P u3+P3/P u1
5	u5	P1/P u5	P2/P u4		P3/P u2	P1/P u5 + P2/P u4+P3/P u2
6	0	0	P2/P u5	[·] ·] ·] 0] ·] ·] ·]	P3/P u3	P2/P u5 + P3/P u3
7	0	0	0	0	P3/P u4	P3/P u4
8	0	0	0		P3/P u5	P3/P u5
9	0	0	0		0	0

Cheias em rios – modelo do hidrograma unitário


Se a precipitação efetiva associada à definição do HUD for de 1 mm:


$$Qj = \sum_{i=1}^{j \le n} pi \ u(j-i+1)$$

$$\label{eq:quantum_quantum_quantum_quantum} \begin{split} Q1 &= p1\,u1 \\ Q2 &= p2\,u1 + p1\,u2 \\ Q3 &= p3\,u1 + p2\,u2 + p1\,u3 \\ Q4 &= p4\,u1 + p3\,u2 + p2\,u3 + p1\,u4 \\ \vdots \\ Qn &= pn\,u1 + p(n-1)\,u2 + p(n-2)\,u3 + \dots + p1\,un \\ Q(n+1) &= pn\,u2 + p(n-1)\,u3 + p(n-2)\,u4 + \dots + p1\,u(n+1) \\ Q(n+2) &= pn\,u3 + p(n-2)\,u3 + p(n-3)\,u4 + \dots + p1\,u(n+2) \\ \vdots \end{split}$$

Intervalo	Precipitação
de tempo	efectiv a
0 - D	P1
D - 2D	P2
2D - 3D	0
3D - 4D	P3

P3/P u3

P3/P u4

P3/P u5

P2/P u5

0

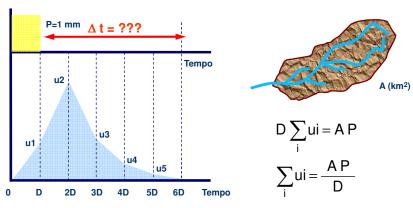
Cheias em rios – modelo do hidrograma unitário

P2/P u5 + P3/P u3

P3/P u4

P3/P u5

Notas finais:


8

0

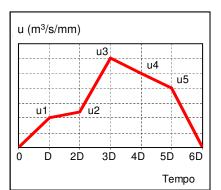
0

0

... igualdade entre o volume da precipitação efetiva e o volume do escoamento direto relação com a área da bacia hidrográfica ... discretização do HUD necessariamente de D em D ...

Notas finais:

... igualdade entre o volume da precipitação efetiva e o volume do escoamento direto relação com a área da bacia hidrográfica


... curva em S

Intervalo de	tempo	HUD			ão efec ponde							Caudal do escoamento directo
Em unidades de D	Tempo (s)	(m³/s/mm)	1	1	1	1	1	1	1	1	1	(m ³ /s)
0	0	0	0	0	0	0	0	0	0	0	0	 0
D	t1	u1	u1	0	0	0	0	0	0	0	0	 u1
2D	t2	u2	u2	u1	0	0	0	0	0	0	0	 u1+u2
3D	t3	u3	u3	u2	u1	0	0	0	0	0	0	 u1+u2+u3
4D	t4	u4	u4	u3	u2	u1	0	0	0	0	0	 u1+u2+u3+u4
5D	t5	u5	u5	u4	u3	u2	u1	0	0	0	0	 u1+u2+u3+u4+u5
6D	t6	0	0	u5	u4	u3	u2	u1	0	0	0	 u1+u2+u3+u4+u5
7D	t7			0	u5	u4	u3	u2	u1	0	0	 u1+u2+u3+u4+u5
8D	t8				0	u5	u4	u3	u2	u1	0	 u1+u2+u3+u4+u5
9D	t9					0	u5	u4	u3	u2	u1	 u1+u2+u3+u4+u5
10D	t10						0	u5	u4	u3	u2	 u1+u2+u3+u4+u5
11D	t11							0	u5	u4	u3	 u1+u2+u3+u4+u5
12D	t12								0	u5	u4	 u1+u2+u3+u4+u5
13D	t13									0	u5	 u1+u2+u3+u4+u5
14D	t14										0	 u1+u2+u3+u4+u5
15D	t15											 u1+u2+u3+u4+u5

Cheias em rios - modelo do hidrograma unitário

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 26

Igualdade entre o volume da precipitação efetiva associada a um qualquer hidrograma e o volume do escoamento direto desse hidrograma particularização para o acaso do hidrograma unitário para a precipitação P com duração D

$$\begin{cases} V_{ED} = \frac{u1}{2}D + \frac{u1+u2}{2}D + \frac{u2+u3}{2}D + \frac{u3+u4}{2}D + \frac{u4+u5}{2}D + \frac{u5}{2}D = D\sum_{i}u_{i} \\ V_{PE} = AP \end{cases}$$

$$\sum_{i}u_{i} = \frac{AP}{D}$$

DECIVIL

DEPARTAMENTO DE ENCENHARIA
CIVIL ARQUITETURA E GEORRECURSOS

Cheias em rios - modelo do hidrograma unitário

Notas finais:

... igualdade entre o volume da precipitação efetiva e o volume do escoamento direto relação com a área da bacia hidrográfica

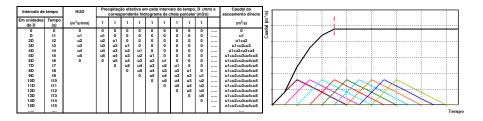
... curva em S

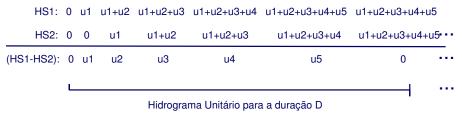
Intervalo de		HUD		cipitaç corres	ão efec ponde								Caudal do escoamento directo				
Em unidades de D	Tempo (s)	(m³/s/mm)	1	1	1	1	1	1	1	1	1		(m³/s)				
0 D	0 t1	0 u1	0 u1	0	0	0	0	0	0	0	0		0 u1				
2D 3D	t2	u2	u2	u1	0	0	0	0	0	0	0		u1+u2				
3D 4D	t3 t4	u3 u4	u3 u4	u2 u3	u1 u2	0 u1	0	0	0	0	0		u1+u2+u3 u1+u2+u3+u4				
5D	t5	u5 0	u5	u4	u3	u2	u1	0	0	0	0		u1+u2+u3+u4+u5				
6D 7D	t6 t7	0	0	u5 0	u4 u5	u3 u4	u2 u3	u1 u2	0 u1	0	0		u1+u2+u3+u4+u5 u1+u2+u3+u4+u5				
8D	t8				0	_	_				-		1 1	•	:	:	
9D 10D	t9 t10					3/8			1		- 1	- 1			1	1	1
11D	t11					트	1		1						<u> </u>	1	1
12D 13D	t12 t13					Caudal (m³/s)						_	- i - i		-		+
14D	t14					Ē						- 1			•	_ui	1
15D	t15						†			/	/					<u>/</u> ui	· ·
																1	
									/								
										<u> </u>	×	ζ,	XXX	X X			
DECIVIL								//		//	\nearrow	X	$\times\!\!\!\times\!\!\!\!\times$				

Notas finais:

... igualdade entre o volume da precipitação efetiva e o volume do escoamento direto relação com a área da bacia hidrográfica

... curva em S

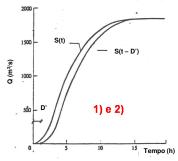

Intervalo de	tempo	HUD		cipitaç corres									Caudal do escoamento directe	•			
m unidades de D	Tempo (s)	(m³/s/mm)	1	1	1	1	1	1	1	1	1		(m ³ /s)				
0	0	0	0	0	0	0	0	0	0	0	0		0				
D 2D	t1	u1	u1	0	0	0	0	0	0	0	0		u1				
3D	t2 t3	u2 u3	u2 u3	u1 u2	0 u1	0	0	0	0	0	0		u1+u2 u1+u2+u3				
3D 4D	t3 t4	u3 u4	u3 u4	u2 u3	u1 u2	u1	0	0	١٥	0	0		u1+u2+u3 u1+u2+u3+u4				
5D	t5	u5	u5	u4	u3	u2	u1	0	١٥	ő	ő		u1+u2+u3+u4+u5				
6D	t6	0	0	u5	u4	u3	u2	u1	ō	ō	ō		u1+u2+u3+u4+u5				
7D	t7			0	u5	u4	u3	u2	u1	0	0		u1+u2+u3+u4+u5				
8D	t8				0	_	_							:	:	:	
9D	t9					, S			- 1		- 1		i	į	i		i
10D	t10					Œ					- 1	- 1			1	1	1
11D 12D	t11 t12					=								ļ	4	į	ļ
13D	t13					鱼						1		-	+	:	:-
14D	t14					Caudal (m³/s)			- 1		1	- A		1	1	-	1
15D	t15					-	ļ				/		-	i	4	∑ui	į
					Щ.					_/					-	-	1
										/	- 1				1	1	1
							ļ			<i>[</i>	4-			ļ	4	i	i
									- 7		- 1		t = ???	į	1		1
									1		- 1		• =	1	1	1	1
									/					<u> </u>	-	į	ļ
								_ /		_	Ĺ			_	Ĺ		1
								_ /_	/ >	×`	×	1	$\times \times \times$	\times			1
							+	-//-	/-	>	()	<	*	·//		<u> </u>	÷
							1 .	/	/		<i>*</i>	✓	\checkmark				1
							1/	_/	′ i /	()	/	/			, ,		i
ECIVIL	ENGENHARIA						\checkmark		_/_		- 7			\sim			-

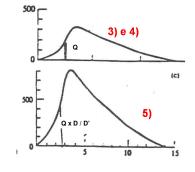

Tempo

Tempo

Cheias em rios - modelo do hidrograma unitário

O Hidrograma Unitário para uma duração D pode ser obtido pela subtração de duas curvas em S desfasadas de D:

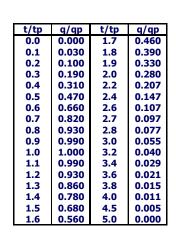


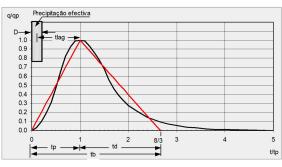

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ----- 29

Cheias em rios - modelo do hidrograma unitário

Obtenção do HUD' para uma duração D' conhecido o HUD para a duração D e para a precipitação efetiva de 1 mm

- 1) Obtenção da curva em S correspondente ao HUD (... sucessivo somatório de todas as ordenadas).
- Obtenção de uma segunda curva em S, igual à precedente mas "translacionarda" (no tempo), da nova duração D'.
- 3) Para cada instante, cálculo das diferenças entras as ordenadas das duas curvas em S.
- 4) O hidrograma assim obtido representa o hidrograma do escoamento direto para a precipitação efetiva com o valor de D'/D e com a duração D' (precipitação, portanto, valor não unitário).
- 5) Para referir o anterior hidrograma à precipitação de 1 mm, transformando-o no HUD', basta multiplicar as correspondentes ordenadas por D/D' e reter apenas as ordenadas que se referem aos sucessivos instantes de D' em D' (ou seja, o HUD' tem de ser discretizado de D' em D').



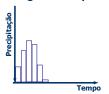

Cheias em rios - modelo do hidrograma unitário 2 ... o volume da precipitação efetiva é igual ao volume do Precipitação útil (mm) escoamento direto do hidrograma de cheia originado por essa precipitação ... $A P_{\text{efectiva}} = \Delta t \sum Q_{\text{directo}}$ 80 **(s**/_E**m**) 60 50 40 Caudal Esc. 30 20 2 5 8 9 Tempo / At

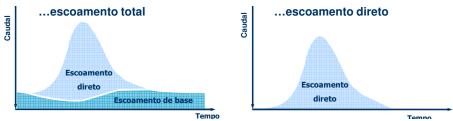
Cheias em rios – hidrogramas unitários sintéticos, HUS

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 30

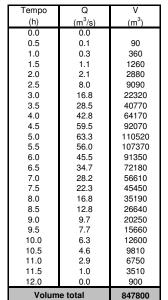
Conceito - HUS do Soil Conservation Service, SCS

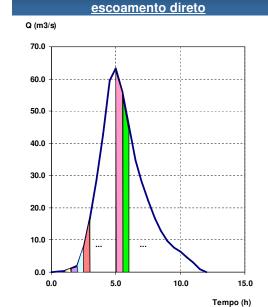
tlag = 0,6 tc $tp = \frac{D}{2} + tlag$

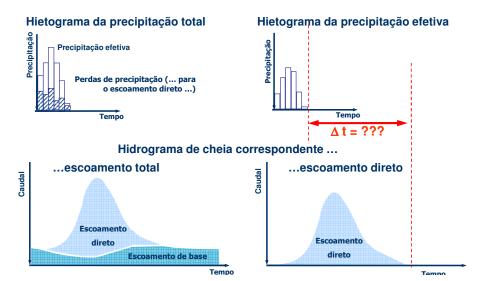

Para P=1 mm $qp = \frac{0,2083 \text{ A}}{tp}$



Hietograma da precipitação efetiva

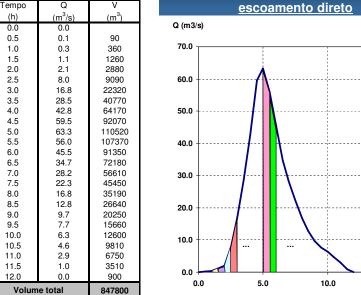



Hidrograma de cheia correspondente ...


... o volume da precipitação efetiva é igual ao volume do escoamento direto do hidrograma de cheia originado por essa precipitação ... $A P_{efectiva} = \Delta t \sum Q_{directo_i}$

Volume do hidrograma de cheia do

(... regra dos trapézios ...)



... o volume da precipitação efetiva é igual ao volume do escoamento direto do hidrograma de cheia originado por essa precipitação ... $A \ P_{\text{efectiva}} = \Delta t \ \sum Q_{\text{directo}_i}$

Volume do hidrograma de cheia do escoamento direto

15.0

Tempo (h)

Exercícios

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano. 2º semestre - 2018/2019) ---- 37

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 39

(43) O hidrograma unitário de determinada bacia hidrográfica encontra-se representado no seguinte quadro:

t (h)	0.0	0.5	1.0	1.5	2.0	2.5	3.0
u (m ³ /s/mm)	0	10	30	25	12	6	0

Desprezando as perdas da precipitação e sabendo que a linha de possibilidade udométrica para o período de retorno de 100 anos na região é dada por

P=5 t 0.5

com P em mm e t em min, determine:

- a) a distribuição temporal da precipitação que maximiza o caudal de ponta de cheia para esse período de retorno,
- b) o referido caudal máximo de ponta de cheia,
- c) o caudal de ponta de cheia que resultaria de uma precipitação com distribuição temporal uniforme (C=0.8).

R: 6.46 mm; 8.70 mm; 11.34 mm; 27.39 mm; 7.34 mm; 5.84 mm; 1321.8 m3/s; 813.2m3/s)

$$\label{eq:continuous} \begin{split} &Q1 = p1u1 \\ &Q2 = p2\,u1 + p1\,u2 \\ &Q3 = p3\,u1 + p2\,u2 + p1\,u3 \\ &Q4 = p4\,u1 + p3\,u2 + p2\,u3 + p1\,u4 \\ &\vdots \\ &Qn = pn\,u1 + p(n-1)\,u2 + p(n-2)\,u3 + \ldots + p1\,un \\ &Q(n+1) = pn\,u2 + p(n-1)\,u3 + p(n-2)\,u4 + \ldots + p1\,u(n+1) \\ &Q(n+2) = pn\,u3 + p(n-2)\,u3 + p(n-3)\,u4 + \ldots + p1\,u(n+2) \end{split}$$

Tempo	Ordenadas	Caudais	do hidrogi	rama de chei	a corerspi	ondente ao escoamento directo (m³/s)
rempo	HUD	H	lidrogramas	s "parcelares		Hidrograma de cheia na secção de
(unidades		P1	P2	0 .	P3	referência da bacia hidrográfica
de D)	(m3/s/mm)	(mm)	(mm)	(mm)	(mm)	(m³/s)
0	0	0				0
1	u1	P1 u1	0			P1 u1
2	u2	P1 u2	P2 u1	0		P1 u2 + P2 u1
3	u3	P1 u3	P2 u2		0	P1 u3 + P2 u2
4	u4	P1 u4	P2 u3	. 0 .	P3 u1	P1 u4+ P2 u3+ P3 u1
5	u5	P1 u5	P2 u4	0	P3 u2	P1 u5 + P2 u4 + P3 u2
6	0	0	P2 u5	0	P3 u3	P2 u5 + P3 u3
7	0	0	0		P3 u4	P3 u4
8	0	0	0		P3 u5	P3 u5
9	0	0	0	· . ō. · .	0	0

(39)Em determinada bacia hidrográfica, em resultado de precipitação útil que, de 30 min em 30 min, foi 5 mm, 10 mm e 3 mm, obteve-se o seguinte hidrograma do escoamento directo

t (h)	0,0	0,5	1,0	1,5	2,0	2,5	3,0
$Q_d (m^3/s)$	0	15	70	99	44	6	0

a) Determine o tempo de concentração da bacia, a área da bacia hidrográfica e o hidrograma unitário para a duração de 0,5 h.

(R: 1.5 h; 23.4 km^2 ; $u1=3 \text{ m}^3/\text{s/mm}$; $u2=8 \text{ m}^3/\text{s/mm}$; $u3=2 \text{ m}^3/\text{s/mm}$).

(33) Em determinada bacia hidrográfica, em resultado de precipitação útil com grande duração e intensidade constante de 60 mm/h, obteve-se o seguinte hidrograma do escoamento directo

t (h)	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	
$O_4(m^3/s)$	0	60	150	280	320	340	350	350	

- a) Determine a área da bacia hidrográfica e o tempo de concentração.
- b) Determine o hidrograma unitário para a duração de 0.25 h. Confirme que o hidrograma que obteve está correcto.

(R: 21 km²; u1=4 m³/s/mm; u2=6 m³/s/mm; u3=26/3 m³/s/mm; u4=8/3 m³/s/mm; u5=4/3 m³/s/mm; u6=2/3 m³/s/mm).