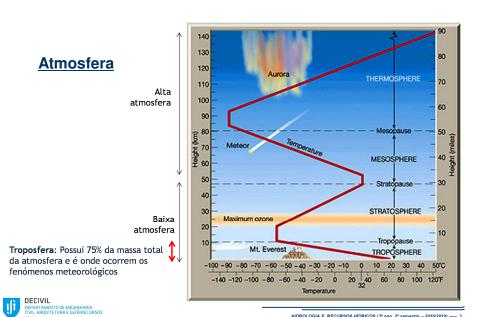


PRECIPITAÇÃO: toda a água que provindo da atmosfera atinge a superfície da Terra.

- A precipitação resulta da CONDENSAÇÃO do vapor de água da atmosfera, o que implica, além da presença de NÚCLEOS DE CONDENSAÇÃO, o ARREFECIMENTO desse vapor.
- Não obstante a precipitação poder ocorrer sob diferentes formas diferenciadas pelo estado da água ao atingir a superfície (chuva, neve, granizo, saraiva, orvalho, geada, névoa ou neblina), em Portugal apenas a PRECIPITAÇÃO LÍQUIDA assume importância prática
- Uma vez que a precipitação "ALIMENTA" a fase terrestre do ciclo hidrológico é indispensável o conhecimento do seu valor para que, entre outros aspetos, se possa equacionar o balanço hidrológico. Tal conhecimento requer a MEDIÇÃO DA PRECIPITAÇÃO.

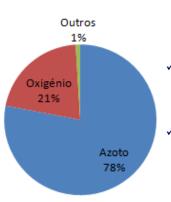


HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019)

Precipitação

Precipitação

HIDROLOGIA E RECURSOS HÍDRICOS (3) ano 3) semestre - 2018/2019)



HIDROLOGIA E

RECURSOS HÍDRICOS

Precipitação

Composição química da atmosfera (ar seco)

- √ A água encontra-se predominantemente na fase gasosa (vapor de água), sendo desprezável a que se encontra na fase liquida ou sólida nas (nuvens)
- ✓ Volume de água na atmosfera : Vol = 13.000 km³ (corresponde to 25 mm) ~0,04% do volume total de água na Terra.
- ✓ A concentração de vapor de água varia muito no espaço e no tempo:

Sobre os desertos: 0%; Sobre os oceanos: 4%;

√ Tempo de residência reduzido: ~8 dias.

Áqua na atmosfera

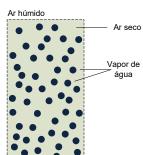
- Quantidade média na atmosfera: 25 mm
- Enorme variação temporal e espacial:
- Norte vs Sul

Latitude (°)	0	10	20	30	40	50	60	70	80
Hem. N (mm)	43.9	39.9	31.1	21.8	16.4	13.2	10.4	7.0	4.8
Hem. S (mm)	42.9	40.5	31.6	21.7	16.1	12.1	7.2	3.0	1.0

Em altitude: 50% até 1500 m (850 mb); 90% até 6000 m (500 mb)

 $V = V_{yy} + V_{d}$

 $M = M_w + M_d$


 $\rho = \frac{M}{V} = \rho_w + \rho_d$

 $\rho_{w} = \frac{M_{w}}{V} \qquad \rho_{d} = \frac{M_{d}}{V}$

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019)

Precipitação

Vapor de água e humidade

Ar humido = Ar seco + Vapor de água

• Humidade absoluta : Quantidade de vapor de água por unidade de volume de ar; exprime-se $em g/m^3$.

$$\rho_{w} = \frac{M_{w}}{V}$$

• Humidade relativa: 0% (ar seco) a 100% (ar saturado)

$$h_r = 100 \cdot \frac{e_c}{e_c^2}$$

• Humidade específica: Massa do vapor de água por unidade de massa do volume de ar; esprime-se em g/g ou g/kg

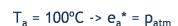
$$q = \frac{M_w}{M}$$

 ρ_d - Massa volúmica do ar seco

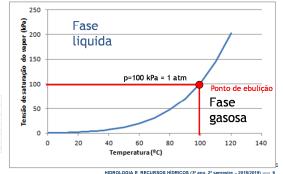
ρ - Massa volúmica do ar húmido

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 7

Tensão de saturação do vapor

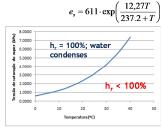

A tensão de saturação do vapor pode ser calculada a partir da temperatura do ar, T_a:

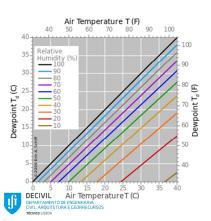
$$e_a^*$$
 (mm Hg), Ta (°K)

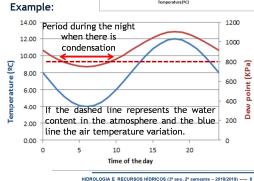

$$e_{a}^{\bullet} = 4,58 \cdot \exp\left[\frac{17.67 \left(T_{a} - 273,15\right)}{T_{a} - 29,6}\right] \qquad e_{a}^{\bullet} = 0,6108 \cdot \exp\left[\frac{12,27 \cdot T_{a}}{237.3 + T}\right] \qquad e_{a}^{\bullet} = 2,749 \cdot 10^{8} \cdot \exp\left[\frac{-4278,6 \cdot T_{a}}{242,79 + T_{a}}\right]$$

$$e_a^* = 0.6108 \cdot \exp \left[\frac{12.27 \cdot T_a}{237.3 + T_a} \right]$$

$$e_a^* = 2,749 \cdot 10^8 \cdot \exp \left[\frac{-4278,6 \cdot T_a}{242,79 + T_a} \right]$$

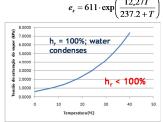

7/001				ea*							
T(ºC)	kPa	kgf/m2	atom	mbar	mm Hg						
0	0.611	0.062	0.006	0.584	4.585						
20	2.338	0.239	0.023	2.236	17.554						
30	4.243	0.433	0.042	4.057	31.854						
100	102.216	10.430	1.010	97.744	767.370						

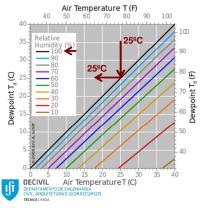


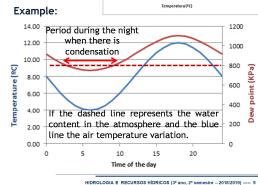

Precipitação

Temperatura de ponto de orvalho

Ponto de orvalho: A temperatura à qual o ar atinge o seu ponto de saturação e em que a quantidade de vapor de água existente no ar começa a condensar /

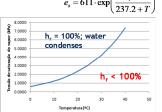


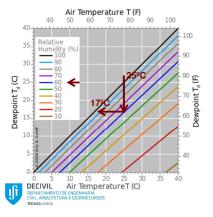


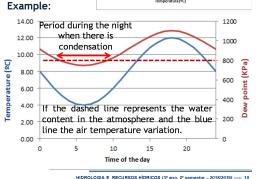


Temperatura de ponto de orvalho

Ponto de orvalho: A <u>temperatura</u> à qual o ar atinge o seu ponto de saturação e em que a quantidade de vapor de água existente no ar começa a condensar /





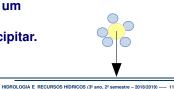


Temperatura de ponto de orvalho

Ponto de orvalho: A <u>temperatura</u> à qual o ar atinge o seu ponto de saturação e em que a quantidade de vapor de água existente no ar começa a condensar /

Precipitação

Formação da precipitação


✓ Vapor de água existente na atmosfera condensa (passa à fase líquida):

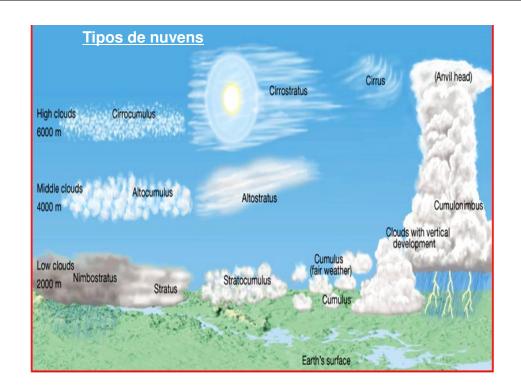
00

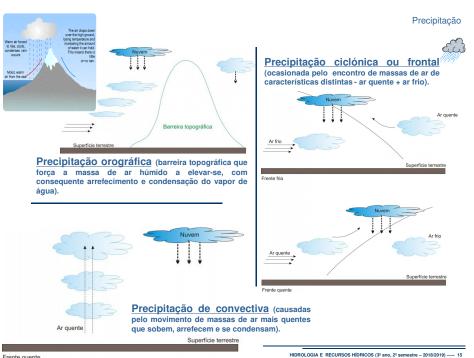
- por redução da temperatura do ar;
- por aumento da quantidade de água e da tensão do vapor (compressão).
- ✓ As gotas de água coalescem em torno de um núcleo com massa suficiente para se precipitar.

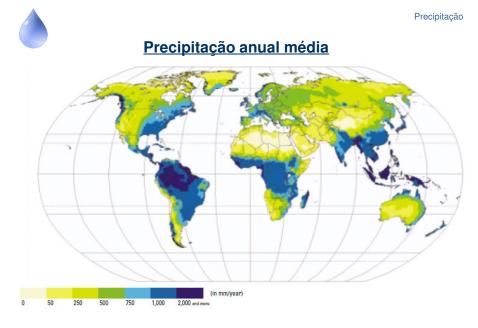
DECIVIL DECIVIL

Precipitação


Tipos de nuvens




https://www.wikihow.com/Forecast-the-Weather-Using-Clouds



Precipitação

https://www.worldatlas.com/articles/the-tenwettest-places-in-the-world.html

1	Mawsynram, Índia	11871	
2	Cherrapunji, Índia	11777	
3	Tutendo, Colômbia	11770	
4	Cropp River, Nova Zelandia	11516	
5	San Antonio de Ureca,	10450	
Э	Guiné Equatorial		
6	Debundscha, Camarões	10299	
7	Big Bog, Havai	10272	
8	Mt Waialeale, Havai	9763	
9	Kukui, Havai	9293	
10	Emei Shan, China	8169	

A precipitação que atinge o vale sob a forma de neve é "varrida" por ventos catábicos, fortes e secos, sofrendo um processo de sublimação

Extremos da precipitação anual média

1	Aoulef, Argélia	12.190
2	Pelican Point, Namíbia	8.130
3	Iquique, Chile	5.080
4	Wadi Alfa, Sudão	2.450
5	Ica, Chile	2.290
6	Luxor, Egito	0.862
7	Assuão, Egito	0.861
8	Kufra, Líbia	0.860
9	Arica, Chile	0.761
10	Atacama, Chile	0.100
11	McMurdo Dry Valleys, Antartida	0.000

https://ourplnt.com/top-ten-driest-places-earth/

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 17

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 19

BRAZIL BOLIVIA Pacific Ocean ARGENTINA

Precipitação Precipitação anual média Annual Precipitation Estimates (mm) 1959/60 - 1990/91 Kriging with **External Drift** 400 - 500 500 - 600 600 - 700 700 - 800 800 - 1000 1000 - 1200 1200 - 1400 1400 - 1600 1600 - 2000 2000 - 2400 2400 - 2800 2800 - 3635

80 Kilometers

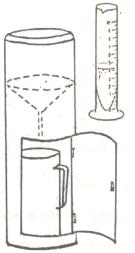
Medição da precipitação

MEDIÇÃO DA PRECIPITAÇÃO (embora de modo descontinuado)

Extremos da precipitação anual média

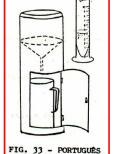
- Mais antiga referência à medição da precipitação: século IV a.C. tendo ocorrido na Índia, por ordem do Chanceler Kautilya que, como imposto indireto sobre os produtos agrícolas, decidiu taxar os solos de acordo com a água neles precipitada.
- Menção seguinte conhecida: Palestina, por volta do século I d.C. tendo sido também motivada pela importância do fenómeno para a agricultura.
- A relevância que as cheias em rios e canais assumiu desde sempre na China determinou que se procedessem também a medições de precipitação a partir de 1247 d.C. Para o efeito, eram utilizados medidores do tipo totalizador, constituídos por grandes recipientes de bambu, instalados em todas as capitais provinciais e de distrito.
- A medição da precipitação foi também muito precocemente iniciada na Coreia, provavelmente por influência da China, mas essencialmente para fornecer informação fundamental para a cultura do arroz, de que dependia a economia daquele país. A primeira referência a medições de precipitação na Coreia data de 1441 utilizando para o efeito dispositivos totalizadores (udómetros) permaneceram em uso até parte do século XX.

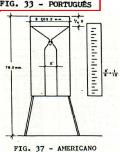
Udómetro Coreano de 1441

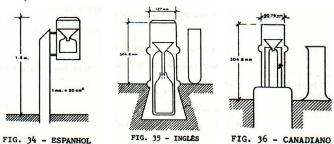

(patente em Lisboa, durante a EXPO98, no pavilhão da Coreia).

Medição da precipitação

Aparelhos totalizadores ou udómetros


A precipitação é medida pontualmente, em pontos isolados equipados com dispositivos especiais, do tipo totalizador - UDÓMETROS (postos udométricos) - ou do tipo registador - UDÓGRAFOS (postos udográficos.)




UDÓMETRO

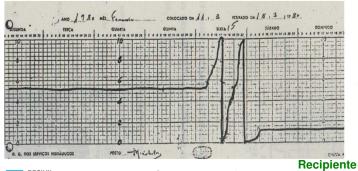
Aparelhos totalizadores ou udómetros

- · Geometria e instalação normalizadas.
- · A precipitação medida pode diferir da precipitação que atinge o solo na vizinhança do aparelho:
 - defeitos do aparelho, incluindo má instalação;
 - evaporação;
 - efeito do vento sobre as trajetórias da precipitação:

efeito do próprio aparelho; efeito do local.

(quanto maior é o intervalo de tempo para o qual são obtidas as medições da precipitação menor é o erro afeto às mesmas).

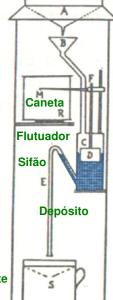
HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 23



Recipiente recetor

UDÓGRAFO (aparelho registador) e UDOGRAMA

recolhido pelo udógrafo

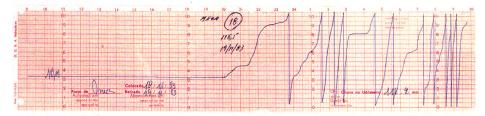

Tambor rotativo

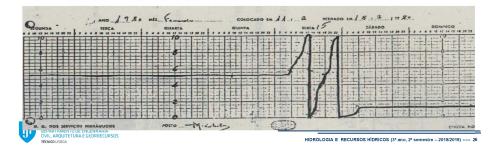
Udógrafo de sifão

HIDROLOGIA E RECUR

Medição da precipitação

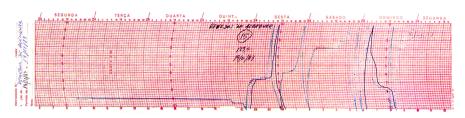
Aparelhos registadores ou udógrafos



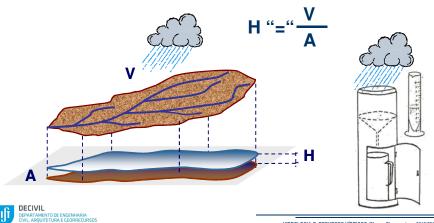


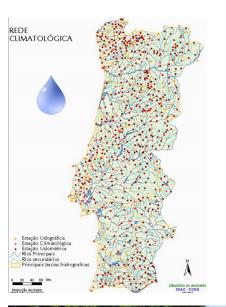
Registos produzidos pelos totalizadores ou udómetros

Registos/UDOGRAMA de um udógrafo de sifão


Medição da precipitação

Aparelhos totalizadores ou udómetros

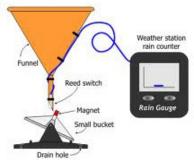

Registos/UDOGRAMA de um udógrafo basculante



Medição da precipitação

A <u>precipitação</u> num dado intervalo de tempo (dia, mês, ano, ...) exprime-se em altura de água uniformemente distribuídas sobre a projeção horizontal da área a que se referem os volumes de água precipitada.

Rede com cerca de 790 postos de medição da precipitação postos udométricos (totalizadores) e udográficos (registadores) da responsabilidade do Ex-Instituto da Água (agora APA)



A tendência catual é para proceder à instalação de sistemas automáticos de aquisição, teletransmissão e arquivo de registos. Tais sistemas tendem a tornar-se progressivamente mais importantes pela sua aplicação a modelos hidrológicos em tempo real, com ênfase para estudos de cheias.

Mediante o Sistema Nacional de Informação de Recursos Hídricos (SNIRH), acessível por Internet, a Agência Portuguesa do Ambiente (http://snirh.apambiente.pt) disponibiliza ao público em geral a maior parte dos registos de precipitação que recolhe.

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ----- 3

Medição da precipitação

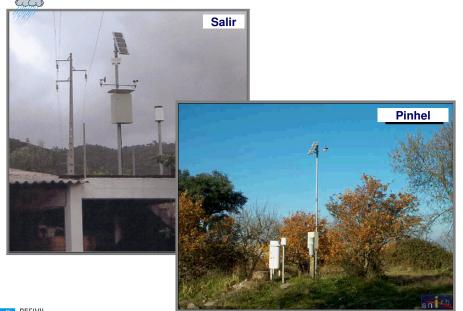
HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 31

Postos udométricos automáticos

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 33

HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ---- 35

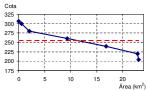
Ferreira de Capelins



HIDROLOGIA E RECURSOS HÍDRICOS (3º ano, 2º semestre - 2018/2019) ----- 34

Medição da precipitação

EXERCÍCIOS

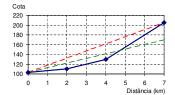


Exercícios

5. Em determinada bacia hidrográfica obtiveram-se os seguintes elementos para análise do relevo,

z (m)	204	220	240	260	280	300	306
A (km ²)	23,05	22,84	16,81	9,32	2,07	0,57	0,00

onde z representa a cota e A, a área de bacia acima dessa cota. Calcule a altura média da bacia hidrográfica. (R: altura e altitude médias de aprox. 50.6 e 254.6 m).



6. A área de determinada bacia hidrográfica é 102 km² e a soma dos desenvolvimentos de todos os seus cursos de água é 300 km, numa dada escala cartográfica. Estime o percurso médio de escoamento sobre o terreno até um curso de água

(R: 85 m)

8. Para o traçado do perfil longitudinal de determinado curso de água determinaram-se os seguintes pontos, de x representa a distância à secção de referência e z, a cota.

x (km)	0	2	4	7
z (m)	103	110	130	205

Determine o declive médio e o declive equivalente do curso de água. (R: dm=0.01457=1.457%=14.57m/km; dequi=0.0096=0.96%=9.6m/km).