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Abstract Earthquakes are a permanent threat to urban environments worldwide. The
communication of the related risk demands accurate damage model simulations and an
interactive visualization of results. The aim of this paper is to provide a realistic problem-
solving environment for earthquake discussions among decision makers, stakeholders, and
the general public. QuakeIST® is an integrated earthquake simulator developed by Instituto
Superior Técnico (Lisbon University), oriented towards the performance of risk calculations
concerning damage propagations that use the Disruption Index concept. This software
imports data stored in a GIS environment, handles different ground motion scenarios, and
deals with a complex situation of different soils and vulnerabilities of various layers of civil
structures (buildings, lifelines, and other urban structures). It models interdependencies
between several infrastructures and between infrastructures and the urban tissue. The com-
puter programme is very versatile, written in separate modules, allowing an experimented
user to incorporate new formulations. Results can be treated with any statistical application
and most common GIS commercial environments can produced their geographic visualiza-
tion. Current progress and new upcoming are briefly described at the end of the paper.

Keywords Seismic risk - Earthquake scenario simulator - Interdependencies - Impact
assessment - GIS input/output

1 Introduction

There are currently many earthquake simulators on the market (see Oliveira et al. 2014a),
such as LNECLoss (2010), GEM1 (2010), SELENA (2010), CAPRA (2014), ELER
(2014), MAEviz (2014), OpenQuake Engine (Silva et al. 2014) and QALARM (2014), and
many papers supporting them, such as Pagani et al. (2014) and Silva et al. (2014).
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However, as far as we know, none of these earthquake simulators addresses the problem of
interdependencies (also referred as cascade or domino effects).

QuakeIST® is an integrated earthquake scenario simulator, programmed in C++,
developed by Instituto Superior Técnico (IST), University of Lisbon. It is structured on a
geographical information system (GIS) and performs risk calculations concerning damage
propagations using the concept of the Disruption Index (DI) (Ferreira et al. 2014). It opens
up new territory for earthquake science and engineering, with the goal to reduce the
potential for loss of life and property.

The QuakeIST® output helps the user to identify the most important factors and system
components (buildings, lifelines, etc.) that contribute to the main urban disruptions,
thereby providing plans and guidance for short-, medium-, and long-term investment
projects to reduce risk.

The key features of QuakeIST® software, illustrated in Fig. 1, are the following:

e The simulator (QuakeIST®) can handle different ground motion scenarios provided by
the user: the epicentre geographic coordinates and the magnitude value; ground motion
values (PGA, EMS-98, etc.) at a grid of points containing the geographical units under
analysis; or other external scenarios obtained from programmes, such as SASHA
(lemico and Albarello 2008) and EXSIM (Motazedian and Atkinson 2005). It also
can deal with response spectra variables.

e QuakeIST® contains a large number of well-known attenuation relationships that may
be selected; alternatively, the user can decide to apply his own GMPE’s.

e The loss and damage models require shaking intensity, macro-seismic intensity, PGA,
PGV, or PGD as one of the input parameters. The simulator has mechanisms to proceed
with all necessary conversions between ground shaking variables and units, leaving to
the user the choice of those more convenient to him. Soil information can be handled
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Users can upload their own hazard, vulnerability and exposure models; Different types of
assets can be modelled (e.g. buildings, lifelines, population);

Modelling of the cascade effects (disruption index) is considered;

It can be used on a single processor laptop, as well as on a cloud GIS computing
infrastructure (QuantumGlIS, etc.)

Fig. 1 QuakeIST® main characteristics
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through Eurocode EC-8 (2004) that deals with classes A to D. Any specific response
spectra can be used as well. The EC-8 (2004) and USGS Spectra (2015) are already
internally coded in the simulator.

e Different types of assets, with no limit to the number of layers (buildings, schools,
bridges, networks, population, etc.) can be modelled.

e QuakeIST® contains algorithms for propagation effects and impact assessment.
QuakeIST® uses a display platform (GIS) to create maps and to measure the possible
impact caused by earthquakes in urban systems. Maps for a given asset typology, or
groups of typologies, and corresponding losses, can be plotted at any given scale, either
for individual or aggregated situations.

e The DI output is prepared for illustrating the interdependency effects and can be plotted
in GIS environment.

In what concerns validation or calibration (i.e., checking that the results match observed
information), a set of tests were performed in the UPStrat-MAFA (2012) Project, using real
data gathered in the occasion of Lorca 2011, Faial 1998, and Iceland 1998 earthquakes.

For a copy of QuakeIST® please contact one of the authors.

2 QuakeIST® architecture

The architecture of QuakeIST® consists of four modules: (1) an urban geo-database, (2) a
library module, (3) a simulation module, and (4) an output module. The urban geo-
database, with information at the level of the geographical unit used for analysis (a region,
a county, or a block), provides basic spatial and statistical data used in the GIS platform for
earthquake scenario simulation. The library module contains four sub-models (ground
motion, vulnerability, damage and loss, and DI models), which correspond to the key
stages involved in earthquake scenarios. The simulation module is an operation center that
integrates data and models. The output module consists of tables containing the various
results at the level of the geographical unit selected. These results can then be exported to
any statistical environment and visualized in most GIS.

2.1 Urban geo-database

Before starting the simulation, the spatial features and attributes of all elements (assets)
must be set up.

The urban elements (or “objects” organized in .txt files) already considered in the
present version of the programme are (if available): residential buildings, healthcare
facilities, schools, security facilities, power stations, local transformers, natural gas pipes,
natural gas pressure reduction and measurement stations (PRMS), pipelines, water pipes
and wastewater pipes. Other objects could be added once their geographic characterization
and attributes are known and defined. The attribute information of each object should be
prepared in a table format as shown in Fig. 2.

2.2 Library module

The library module contains geo-referred information needed to compute the various sub-
models on ground motion, vulnerability, damage and disruption index.
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| Bridges oid Name  SUID Lat Lon N VClass
|__ Buidings 0= 95 37.61746 15.14401 1 1
| Explosives 5= 285 37.72545 15.18161 1 2
6* 285 37.72565 15.18181 1 1
| Healthcare 1* 292 37.72525 15.18201 1 1
objects . .
| Hospital - mm—p 2" 292 3772525 15.18201 1 1
| Local Transformers 3= 292 37.72525 15.18201 1 3
| NG GPRMS 4= 292 37.72525 15.18201 1 3
) NG Pipelines 7+ 307 37.72215 15.18251 1 2
| NG Pipes

Fig. 2 QuakeIST® input data. The objects are composed by: object ID (OID); Name (hospital name or
other facility); Spatial Unit Identifier (SUID: identifies the cells where the exposed objects are considered
and where a constant value of surface ground motion exists, as defined by macroseismic intensity, peak
ground acceleration, peak ground velocity, or other), Latitude, Longitude, N (number of objects in the same
cell), and VClass (vulnerability class)

Ground motion can be assessed in different ways as described on the Simulation Module.
In all cases, soil categorization, which is a very important issue for a more correct analysis of
site-effects, is considered. Data on this item can be derived from microzoning studies or from
macro modelling based on general surface geological mapping. The present module con-
siders soil amplification following the classification and formulation given in EC-8 (2004)
with four classes A to D. The geographic unit of work depends on the detail of existing
information, as it happens in all other cases (objects, assets, etc.), and in QuakelST® the
information is associated to the centre of mass of that particular unit. To assess the conse-
quences and impacts of earthquake scenarios, we need tools to predict the physical conse-
quences on given “objects” in urban areas, as well as access to the vulnerability and thus
potential damage to the surrounding environment, infra-structures, and population.

“Building objects” are separated from “non-building objects”. Information on the first
category is obtained essentially from building Census, and damage estimations are often
derived from procedures such as:

Spectrum capacity (ATC 40 1996);

Spectrum capacity with bilinear capacity spectrum (ATC 40 1996);

N2 Procedure (Fajfar in EC-8 2004 and 2005);

Macroseismic method (Giovinazzi and Lagomarsino 2004);

Fragility functions, often gathered from Damage Probability Matrices (DPM’s).

“Non-building objects”, mainly lifelines, industrial components, and other special
objects, are often managed by specific procedures, such as customized:

e Fragility functions;
e [ oss functions;
e Repair rate functions.

All the above mentioned procedures are internally coded in QuakeIST®.

Building typologies and the corresponding vulnerabilities must be provided by the user.
We have examples of use of few classes in the application of QuakeIST® to Mount Etna
(Meroni et al. 2015), or of hundred classes in the Lisbon case (Mota de Sa 2016).

With QuakeIST® it is easy to compare the results produced by different methodologies
and better understand their differences. As an illustration, Fig. 3 presents the capacity
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(s) (m/s2)  (cm) (-) (cm)
Typology Floors Slabs Ty Say de 1% Sdu
Simple Stone masonry with 3D wooden truss, (1755...1870) 4 Wood 0,440 1,890 0,927 2,680 2,484
Simple Stone Masonry (1870...1930) 6 Wood 0,640 1,060 1,100 3,060 3,365
Unreinforced Masonry (1940...1950) 3 Wood and RC 0,240 1,920 0,280 8,730 2,446
Reinforced Masonry (1950...1960) 3 RC 0,350 3,490 1,083 2,820 3,054
RC Moment Frame (1960...1986) 7 RC 1,055 1,933 5450 1337 7,286
RC Moment Frame (1986...2000) 7 RC 1,001 2,247 5703 1,786 10,186
RC Moment Frame (2000...) 9 RC 1,067 2,830 8161 1570 12,813
Sa (m/s?)
4,00 j
Capacity Curves for s?me —— Simple Stone masonry with 3D wooden truss,
Portuguese Typologies (1755...1870), 4 Floors, Wooden Slabs
3,50
& Simple Stone Masonry (1870...1930), 6 Floors,
Wooden Slabs
3,00
Unreinforced Masonry (1940...1950), 3 Floors,
2,501 Wood and RC Slabs
— Reinforced Masonry (1950...1960), 3 Floors, RC
2,00 A . Slabs
—# RC Moment Frame (1960...1986), 7 Floors, RC
1,50 Slabs
4 RC Moment Frame (1986...2000), 7 Floors, RC
1,00 1 Slabs
0,50 4 RC Moment Frame (2000...), 9 Floors, RC Slabs
0,00 ¢ T T T T T T ]
0 2 4 6 8 10 12 14
Sd (cm)

Fig. 3 Example of capacity curves used to obtain vulnerability functions of seven different typologies
related to the Portuguese building stock

curves adapted from ATC 40 (1996) of a few typologies used to study vulnerability of the
Portuguese building stock.

Other vulnerability or fragility relationships for various components or elements at risk
subjected to ground shaking [EMS98, PGA, PGV, PGD, Sa(T), etc.] can be obtained from
published information, as shown in Table 1. QuakeIST® provides many of the conversion laws
to deal with different ground motion parameters (conversions from/to Intensity—PGA, etc.).

Figure 4 presents fragility curves developed for the most common traditional masonry
buildings in Portugal, considering four floors. These curves are already part of the database
of QuakeIST®. Similar curves are available for a different number of floors and for
reinforced concrete structures (Mota de Sa 2016). Other fragility curves can easily be
added to the library module.

For population affected by a given scenario, Human Losses estimation was adapted
from previous works, resulting in the values H and L shown below. More precisely, these
expressions were at first adapted from LNECLoss (2010), Tiedemann (1992), HAZUS
(2010), and Coburn et al. (1992) and later modified and adopted in the “Algarve Seismic
Simulator” (ERSTA 2008) and published in the WP22 Final Report (Mota de Sa 2009).

H = 0.65 x P[Ds = 4] x Tr x Pr x A x n/100
L = 032 x P[Ds = 4] x Tr x Pr x A x n/100

where H, total number of persons estimated to be severely injured; L, total number of
estimated Life Lost; P[Ds = 4], probability of some system attaining damage degree (Ds)
equals to 4; Tr, time occupancy rate, defined by the % of time of human presence in the

@ Springer



Bull Earthquake Eng (2016) 14:2047-2067

2052

uoneIa[ade [endads (7)rs uowade(dsip punoid yead o4 Aoorea punoid yead AHg ‘uoners2ooe punoid yead yoq
(90107) D-IoUAS WOIJ UAYe) dIoM San[eA g pue [ ‘oY

~ADd
~ADd
~ADd
~ADd
[s/wo ut ADA] ;4yADd

X X X X X

!
!
!
!
!

X X X X X

oy = [uny/yg] ¥ -
oy = [uny/yg] ¥ -
oy = [uny/q] ¥y :
oY = [uny/q] ¥y :
oy = [uny/yg] ¥y -

qyer aredoy
qyer aredoy
qyer aredoy
qyer aredoy
qyer aredoy

[eutioNSoT = [Y < 3p] d
[eutioNSoT = [Y < 8p] d
[eutoN3oT = [ < 3p] d

suonnqusi(q eyeg Io feuoN3o ([ < Spl 4
suonnqusi(q eyeg Io [euoNSoT ([ < Spl 4
suonnqsiq eieg Jo putoNSoT [y < Spl d

suonnqmsi(J v1og Io TeurtoNSoT (Y < Sp] 4

aond ‘ADd ‘vHd
and ‘ADd ‘vHd
and ‘ADd ‘vHd
and ‘ADd ‘vod
aond ‘ADd ‘vHd
ADd ‘VHd

ADd ‘VOd

vod

86SINH Asuajug
86SINH Ansuajug
86SINE Avsuayu|

VDd 10 86SINH Asuaiug

(0102) 1opow SNZVH
(0102) 1opow SNZVH
(Q010¢) Waloxd  H-10ufg,,
(Q010¢) Wafoxd  H-10ufg,,
(Q010¢) Waloxd  H-10ufg,,
(8007) weloxd  VISIA.,
(e0107) 1eloid  O-10Ufg,,
(8007) elord  vVISYH.,
poyjour dTWSIISOIdBIA
poyjaur JTWISIISOIdBIA
poyjawr dTWISIISOIdRIA

poyow Ajoede)
POYIoW OTWSIISOIIBIA

sadid 1o1em-0)se
sadid 1ore M
saurfadig

SINYd sed [emjeN
sadid seS [eamjeN
SIOULIOJSURI) [BO0]
SUOTIBIS JOMOJ
sadpug

sSurpring A1noag
SSUIP[ING [00Ydg
s3uIpIing a1edy)[esy

ssuIp[ing

swyjos[e aseweq

Jo uomnoung

Aniqerounp

YSH 1B JUSWA[g

[(#102) T 10 BIIOLID,] WOIJ UAYE)] S}OSSE JUIQJJIP UI SISSO[ PUB dTeWEP SALIP 0) SIAITO[OPOYIW JUAIIJIJ | d[qeL

pringer

Qs



Bull Earthquake Eng (2016) 14:2047-2067

2053

Skght]
100%

80% -

60% -

40% -

20% -

P[Damages z

Fragility Curves for
Slight Damages

—Simple Stone
Mason.
—Pombalino

—Gaioleiro

- - -Simple Stone Mixed
Slabs

0%

e.e

P[Damages z
Moderate]

100%

80% -

Fragility Curves for
Moderate Damages

cs e

egs (Hl/sZ-)

P[Damages z
Extensive]
100%

80% -

60% -

40% -

20% -

Fragility Curves for
Extensive Damages

1.0
23S (m/22)

s 2

Fig. 4 Fragility curves for various masonry buildings (four floors) in Portugal (Mota de Sa 2016)
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building during a normal week; Pr, average number of persons per 100 m? of floor area,
herein assumed to be 3.3, in accordance with Portuguese statistical data published by INE
(2011); A, plan floor area of the building (mz); n, building number of floors.

QuakeIST® was designed not only to combine seismic hazard, vulnerabilities, physical
damages and the loss of service from lifelines, but also to integrate the DI about urban and
societal impacts (Oliveira et al. 2012; Ferreira 2012; Ferreira et al. 2014, 2015).

The purpose of the DI is to condense, in a concise and easy way, complex problems and
multi-dimensional situations involving the earthquake impact in the urban system and
livelihood, and identify interdependencies and connections among them. The development
was based on extensive bibliographical research about the physical and social impacts of
severe events, and on the experience gained in several earthquake field missions in dif-
ferent regions of the world.

More than 70 Primary Concerns were found to be systematically present in all texts and
reports. They were aggregated into 14 Fundamental Criteria (using the rules of decision
problem structuring), which translate the urban functions and dictate what we see as an
urban system’s ability or disability to respond to the observed demands (Ferreira 2012).
Each one of the 14 Fundamental Criteria is characterized by an impact descriptor (Ferreira
et al. 2014). Urban functions were then defined and classified using the following six
Dimensions of human fundamental needs: “Environment, Housing, Healthcare, Education,
Employment, and Food”. These six Dimensions are affected by several other main
functions/systems, such as mobility, electricity, water, and telecommunications, which, in
turn, depend on the reliability of several buildings, equipment system facilities, and critical
or dangerous facilities, in a bottom-up construction. As an example, in a top-down
description, Fig. 5 presents the global DI impact descriptor and the dependency rules from
the six Dimensions of fundamental needs;

Figure 6 shows the impact descriptor of one of these six fundamental needs (in this
case, the Environment and the dependency rules from lifeline behaviour); and Fig. 7
presents the impact descriptor of the physical damage states of the critical infrastructures,
one type of facilities influencing the Environment (Fig. 6).

The other dependencies and tables setting the algorithms are described in Ferreira et al.
(2014). An example of the application of DI to three areas of the Algarve region (South

= 3

Impact descriptor.

Assesses the environmental impacts due to soil contamination, water, aquifer or
Impact (spiils. it aiso assess the impact of service disruption of urban hygiene/pubiic Critical Waiter supply Sanitation
level |heaith from debris storage (building materials, personal property, and sediment infrastructures supply
from mudsiides), contamination of water (unsafe drinking water and sanitation)

and the high concentration of peopie in the same space.

Explosion danger, nuclear, chemical, biological, radiological accidents, etc.
v Comammatlon of air, soxls \Jater and/or aquifers. Could occur phenomenon of
tr Y pollution problems. Need to evacuate.

> 111

i concerns: itation problems with health impacts (dysentery,
malana etc.), building waste/debris problems. Contaminated drinking water (due to
sewage contamination and seawater contaminated with sewage) poses a serious
health threat, with risk of disease.

>l OR| > 1l OR > 11

Local pollution/contamination problems. Leaks or spills of substances such as oil,
1 waste oil, fuel, lubricants, paints. Public health problems, substances can pose
risks to people. >1 OR)| >l OR >1

1 No adverse effects.

Fig. 6 Qualitative descriptors of environment and dependency rules from lifeline behaviour
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Impact (Impact descriptor.
level [Measure the state of critical infrastructures damage.
|\ Explosions, severe damages to the infrastructures or total loss.

1l Moderate damages (D3).

1} Slightly damages (D2).

| No damage or minor damage, fully operational.

Fig. 7 Qualitative descriptors of critical infrastructures

Portugal) is presented in Ferreira et al. (2015), and its application to Monte Etna (Italy) in
Meroni et al. (2015), (this issue).

The first approach to DI was an application made in Excel® environment related to an
entire zone affected by the Faial (Azores) 1998 earthquake (Oliveira et al. 2012). It became
clear that the DI methodology depended on the geographic area under analysis and on the
level of interdependencies studied.

A new initiative took place to respond to these challenges, in order to make DI a tool
with geographic significance. The first problem was solved by introducing the concept of
geographic minimal unit with meaningful sense. It could not be the size of a building
because we need to make averages, but it could not be even a large area, unless we just
wanted to look to an overall measure of disruption for an entire region. We selected the
block, a grid, or any other geographic unit of the census track and something which can be
referred as the center of gravity of our detailed analysis. The second problem was also dealt
with as the more layers or urban systems are considered, the more correct the interde-
pendency situation is analyzed. It means that the more complete is the analysis, the more
close to the upper value of interdependencies we are.

Urban centers do not function in isolation; rather they provide goods and services to the
area lying beyond the urban boundary; people from the surrounding area commute to a

Source Layer Name Radius of influence (km)
Power stations

Local Transformers
Bridges

Aqueducts
Reservoirs

Water Pipes
Wastewater Pipes
Natural gas Pipelines
Natural gas GPRMS
Natural gas Pipes
Buildings

Healthcare

Schools

Security

N4
s

-h |
M-U‘mo—tur—nr\)—t—s—nm-tw

Fig. 8 Left criteria for delineation of the radius (sphere) of influence. Right illustration of spatial modelling
and spheres of influence
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1]

1
-V
—

Fig. 9 Algarve region, Portugal: comparison between intensity map (left) and DI map (right)

town to access the required facilities. At this point we introduce the city’s “sphere of
influence” which describes its physical boundaries and the areas where facilities, ameni-
ties, and services are allocated in a fair manner within the urban center. Subsequently,
urban population is found distributed among the settlements of varying sizes from smaller
towns to giant cities (Pascione 2001).

In general, firehouses, hospitals, schools, etc., should be distributed throughout the city,
so that each facility has a primary service area extending within a recommended radius.
From the center of each cell a circle is drawn up to an x radius distance; for example
schools are located within a 1.5 km radius of each grid cell. Figure 8 presents the radius of
influence for some common urban facilities and networks, and depicts the circular form of
the “sphere of influence” of amenities and facilities. Those values agree with planning and
urban design standards. They can be slightly changed and their influence analyzed.

DI computations are made for a grid of points or for the center of gravity of a block of
buildings (or other geographic unit), applying the concept of radius of influence. Isolines of
DI (isoDI, or zones of equal DI) are then drawn to obtain the geographical location of
transitions between them. All this methodology was programmed in QuakeIST® and the
output information is structured in shapefile format, which can be exported to any GIS
platform and subsequently treated in terms of spatial and statistical information.
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Consequently, it is possible to calculate isoDI areas (Ferreira et al. 2015) and understand
the real propagation effect as a function of various interdependencies. The two panels of
Fig. 9 clearly show how the propagation effect amplifies the region of individual
responses.

Several questions may be placed at this instance about the sensitivity of the DI on the
size of the grid and on the absence of information required to deal with all six Dimensions
of fundamental human needs, and other sources of uncertainty. These issues are discussed
at length in Ferreira et al. (2015) and in Oliveira et al. (2014a, b).

The DI concept can be extended without further computer programming to other sys-
tems having important interdependencies, such as industrial complexes. Other multi-hazard
analyses, in macro or micro scale, can also be dealt with, requiring minor adjustments to
QuakeIST®.

2.3 Simulation module

The simulation focuses on the impacts from buildings and assets conditions, according to
different scenarios (based on attenuation conversion law, intensity to PGA conversion law,

_loix]
File Edit Format View Help

Shake Name ‘J
IPGA Law ?omars1no (2006)

IPGV Law wa d (1999)

IPGD Law
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S rule Bounded

Magnitude/Io 6.2
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Geoid International 1924
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Fig. 10 User model layout for ground motion definition
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Intensity to PGV conversion law, magnitude, and so on). As soon as a new scenario is
developed, it is automatically added to the existing library.

Figure 10 illustrates the “user model” for scenario configuration (in this case two
scenarios are prepared for simulation), where the user chooses the parameter settings for
simulation, such as the attenuation model and conversion Intensity/PGA/PGV spectra,
already available in the library. QuakeIST® allows two ways of specifying ground motion:
(1) supplying a text file with ground motion values in some specific points defined by their
coordinates, or (2) supplying epicentre coordinates and a Magnitude “Mw” or Intensity
“I,” value.

The parameters considered for simulation, presented in the “user-model” of Fig. 10 are
described in Fig. 11.

A large set of attenuation formulae or of GMPE’s, PGA, PGV conversions laws to
EMS-98 are embodied in the surface ground motion module. Figure 12 presents a set of

line Name line Description line Class
Shake Name "*" if scenario is internal; "Some_Scenario_name" if scenario is external Text [30]

IPGA Law Function to be used in converting ShakeV to | or PGA. Possible values Text [30]

IPGV Law Function to be used in converting ShakeV to PGV. Possible values Text [30]

IPGD Law Function to be used in converting ShakeV to PGD. Possible values Text [30]
PGAPGV Law Function to be used in converting PGA - PGV. Possible values Text [30]
EMCMCS Law Function to be used in converting IMCS to IEMS. Possible values Text [30]

Att Law Att. Law used to predict Ground Shaking f (Magn, R). Possible values Text [30]

S rule Site Effects (Soil Amplification/Deamplification rule) Text [30]
Magnitude Magnitude or Epicentral Intensity, lo (O if scenario is external) Float (Double)
Epi Lat Epicenter Latitude in decimal degrees (O if scenario is external) Float (Double)
Epi Long Epicenter Longitude in decimal degrees (O if scenario is external) Float (Double)
Geoid Geoid (Theoretical surface used to compute distances) Text [30]
Nnear Number of near points in external scenario that should be used to obtain Gm values in other points. Integer

Fig. 11 Parameter definition
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= Default
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Fig. 12 Attenuation curves available in the library module. All references can be consulted in Mota de Sa
(2016)
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Field Name [Field Description Field Class
Oid Building_object Unique Identifier Integer (Long)
Mean Mean Damage Grade Float (Double)
|Mode Most Observed Damage Grade Integer

|p||1 Likelyhood of Damage Grade 1 being achieved or surpassed, P[dg 2 1] Float (Double)
|pp2 Likelyhood of Damage Grade 2 being achieved or surpassed, P[dg 2 2] Float (Double)
pp3 Likelyhood of Damage Grade 3 being achieved or surpassed, P[dg 2 3] Float (Double)
ppd Likelyhood of Damage Grade 4 being achieved or surpassed, P[dg 2 4] Float (Double)
PpS Likelyhood of Damage Grade S being achieved or surpassed, P[dg 2 5] Float (Double)
n0 Number of, with No Damages, at (Lat, Long) Float (Double)
nl Number of, with Damages Grade 1, at (Lat, Long) Float (Double)
n2 Number of, with Damages Grade 2, at (Lat, Long) Float (Double)
n3 Number of, with Damages Grade 3, at (Lat, Long) Float (Double)
|n4 Number of, with Damages Grade 4, at (Lat, Long) Float (Double)
|n5 Number of, with Damages Grade 5, at (Lat, Long) Float (Double)

(*) Case N=1, Numberof =P [ ]

oid mdg

| Buildings damages
L Explosives damages
|| Healthcare damages
|| Hospital damages

s w N e o

] out surface ground motion syip

Fig. 14 Structure of output folders and results
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attenuation curves already available, and Fig. 13 the conversion of ground motion
parameters. Both figures show the tremendous scatter for these two issues. One has to be
aware that the choice of the attenuation function and of conversion laws are very impor-
tant. Customizing these functions will reduce the great epistemic uncertainties which will
be present in the final results.

2.4 Output module

To understand the output of the earthquake scenarios, the results are computed for each
object in the form of the fraction of buildings that reached or surpassed each damage state,
ppk = P x [Ds > k]. QuakeIST® can also provide a damage distribution per building
typology (amount of buildings in each damage state within the same building class) or the
total damage distribution (sum of all the buildings in each damage state). Figure 14
illustrates the structure of output folders and results. Linking these data to each object and
facility, several maps, with damages geographically detailed in any GIS platform, are
obtained.

Once all the information is compiled, QuakeIST® is ready to run and calculate the
impact results for an entire region, or for a part of that region. For the case of about
220,000 buildings and lifelines, the computation time for one scenario in a portable with
3.1 GHz processer is <5 s. The simulation module is designed to depict earthquake
damage states for each defined layer. In Fig. 15 we see the imported results in a GIS
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Fig. 15 QuakeIST® example of simulation in a region (Algarve, south Portugal). Output with building
damage states—brown arrow—use superposition of pies designed for the centre of mass of each statistical
sub-tract (unit). Blue arrow indicates the zoomed zone presented in Fig. 16) (Produced in ArcGIS® 2015)
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Fig. 16 Output (smoothed mean damage density) plotted on a Google Map® interface, zoomed of Fig. 15
(Courtesy of Jodo Bonacho 2016) (Produced in QGIS® 2015)

environment, in terms of “pie” representation at each geographic sub-section. And in
Fig. 16, using another GIS platform, one council of the region presented in Fig. 15 is
zoomed and the smoothed mean damage density is plotted by means of a “heat function”
on top of a Google Map® interface. This way, visualization of more vulnerable areas are
decided by the end-user operator.

3 Decision-support for disaster risk reduction: upcoming research

To be independent from the GIS platform, the simulator interacts with GIS and other
software by Tab-Delimited Text Files. This provides freedom to use the simulator data
(input and output) with many other applications offering statistical and risk analyses, or
simply using spreadsheets. This is an important feature, once a better understanding of
seismic risk can be achieved by the use of other software.

In Fig. 17, as an example of end-user application of the QuakeIST®, a very common
characteristic of seismic risk, “skewed probability distributions”, can be observed. In fact,
apart very few cases where left (negatively) skewed or even bimodal distributions appear,
risk probability distributions are often right skewed (Mode < Median < Mean), leading to
average values inducing a highly biased interpretation of seismic risk. Considering sce-
nario generated by QuakeIST® for the city of Sines, Portugal (Oliveira et al. 2014a, b), the
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Fit Comparison for Extensive Damages Probability
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Fig. 17 Example of risk distributions often right (positively) skewed (@RISK 2014)

mean probability of extensive damages in the building stock would be about 17 %,
whereas the most expected probability (the mode) is only about 0.2 %, and even the
median probability is only about 3.8 %.

A second example of interaction of QuakeIST® with external applications can be
observed in Fig. 18, where Risk Importance Measures and Multi-State Interdependent
Systems (Apostolakis and Lemon 2005; Vesely et al. 1983) were used to identify Potential
Policies of Risk Reduction in Faial Island (Ferreira et al. 2015, where all definitions and
glossary presented below are explained).

There, the simulator was used in scenarios generation where the multiple exposed
critical assets were subjected to different vulnerability modifications, simulating various
possible polices interventions. Then, from the simulator results, Risk Importance Measures
(RRW and RAW) were used to understand the influence of assets seismic vulnerability in
the Global Disruption induced in the urban system measured by the DI. From the inter-
pretation of the results shown herein, it was possible, beyond several other conclusions, to
assert that:

e Mobility (here translated by vulnerability in the Transportation sector assets) is
(besides the building stock) the most responsible for restrictions in risk containment,
preventing Risk Reduction even if others sectors improving are pursued. This is
observed by the R* Indicator = 19 %.

e Again, besides an intervention in the building stock, it is also possible to conclude that
improving Transportation assets resilience would bring a 22 % reduction in seismic
risk. This is translated by RRW = 1.22, for these assets.
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e If degradation in Security facilities is not restricted, seismic risk can be expected to
increase in about 81 %, which indicates that strong attention should be put in these
sector facilities. This is shown by the RAW Indicator = 1.81, for these facilities.

These examples, beyond many others, show that the usefulness of a seismic Simulator
such as QuakeIST® goes further beyond simple damage expectations, providing an
extremely versatile and multi-objective support for seismic assessment, communication
and management.

4 Conclusion

An integrated earthquake scenario model requires sophisticated software support to cope
with the complexity of current engineering tasks, especially when the interdependencies
among systems are included. The introduction of the Disruption Index (DI) brings new
quality and special interest to understand the earthquake impact in urban areas, repre-
senting an advance in the state-of-the-art over most earthquake loss-prediction models.

The UPStrat-MAFA Project (2012) used the QuakelIST® software in several pilot-areas
of Italy, Portugal, Spain, and Iceland to measure risk and quantify the impacts, considering
the DI concept. The pilot-areas under study were very important to calibrate several
parameters of the model and to check its reliability and efficiency. The outputs provided
the spatial distribution of expected damages and were important tools to support policy-
and decision-making in the context of earthquake risk management, disaster mitigation,
post-earthquake emergency response, and urban planning. These applications improved, in
a more comprehensive way, the capacity for defining strategies to address adverse natural
events.

QuakeIST® is a very versatile software in the sense that the user can change the
parameters and test different assumptions about hazards, vulnerability, exposure, and the
interdependency protocol. The platform architecture has been developed to be modular,
extensible, and open, enabling the possibility to include various inputs and other infor-
mation. Because the core software is written in C++, inputs and outputs can be transported
from/to almost any GIS environment. As a short comment within this context, we should
emphasize that the simulator itself is no more a problem (the computer time and size of
region under analysis are compatible with the performances of a portable computer), but
more accurate results are only possible if QuakeIST® is fed with “good” inventory data.

Future developments of QuakeIST® will include other modules, namely one dealing
with hazard analysis and de-aggregation and another dedicated to cost-benefit analyses.
Coming versions will be designed with a more friendly architecture, so that a non-expert in
GIS handling can use this software (data preparation and visualization of results) in an
easier way. Further expansions will include the access to “event-tree” analysis (Lee et al.
1985) and analyses of uncertainties using Monte-Carlo simulations, through risk man-
agement software such as @RISK (2014). QuakelST® is especially oriented towards
studies requiring a great deal of runs, each one with a different input parameter. The
influence of attenuation laws, the soil characteristics underlying the implantation of our
facilities, the form of attributing typological classes to buildings classified in Census data,
the process of aggregation typologies to the centre of mass of the urban unit, the dynamics
of commuting population along the day, the week, etc., are some of the analyses
QuakeIST® can perform easily and process output data in a statistical sense.
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In relation to DI, several analyses along the lines stated before can be pursued to study
the influence of certain parameters on the overall output. In spite of all these uncertainties,
DI is a step ahead of other simulators, because it can be used as a basis to define strategic
indicators for risk mitigation policies (Ferreira et al. 2015) as shown in the final example
presented.
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