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CHAPTER 2

SIMPLIFIED ANALYTICAL PROCEDURES FOR
PREDICTING SOIL-STRUCTURE INTERACTION EFFECTS

2.1 Introduction and Problem Definition

2.1.1 Components of the Soil-Structure Interaction Problem

The deformations of a structure during earthquake shaking are affected by

interactions between three linked systems:  the structure, the foundation, and the geologic

media underlying and surrounding the foundation.  A seismic Soil-Structure Interaction

(SSI) analysis evaluates the collective response of these systems to a specified free-field

ground motion.

Two physical phenomena comprise the mechanisms of interaction between the

structure, foundation, and soil:

• Inertial Interaction:  Inertia developed in the structure due to its own vibrations gives

rise to base shear and moment, which in turn cause displacements of the foundation

relative to the free-field.

• Kinematic Interaction:  The presence of stiff foundation elements on or in soil will

cause foundation motions to deviate from free-field motions.   Three mechanisms can

potentially contribute to such deviations:  (a) Base-Slab Averaging; free-field motions

associated with inclined and/or incoherent wave fields are “averaged” within the

footprint area of the base-slab due to the kinematic constraint of essentially rigid-body

motion of the slab, (b) Embedment effects;  the reduction of seismic ground motion
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with depth for embedded foundations, and (c) Wave Scattering; scattering of seismic

waves off of corners and asperities of the foundation.

The effects of these phenomena are often described by a complex-valued transfer function

relating free-field and foundation motions, and a complex-valued impedance function

which quantifies the stiffness and damping characteristics of foundation-soil interaction.

The damping represented by the imaginary part of the impedance function is a

consequence of hysteretic damping in the soil and foundation, and radiation of seismic

energy away from the foundation through the soil.

Both the transfer and impedance functions are dependent on the finite stiffness and

damping characteristics of the soil medium.  For the fictional condition of an infinitely

stiff soil, the amplitude of the transfer function for translational motion is unity and the

phase is zero (i.e. the foundation and free-field motions are identical), and the impedance

function has infinite real parts and zero imaginary parts.  It is of some practical

significance that this unrealistic assumption of rigid soil is made when SSI effects are

ignored (which is common practice in structural design).

2.1.2 Methodologies for Soil-Structure Interaction Analysis

The general methods by which SSI analyses are performed can be categorized as

direct and substructure approaches.  In a direct approach, the soil and structure are

included within the same model and analyzed in a single step.  The soil is often

discretized with solid finite elements and the structure with finite beam elements.

Because assumptions of superposition are not required, true nonlinear analyses are

possible (e.g. Borja et al., 1992 and Weidlinger Assoc., 1978).  However, results from
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nonlinear analyses can be quite sensitive to poorly-defined parameters in the soil

constitutive model, and the analyses remain quite expensive from a computational

standpoint.  Hence, direct SSI analyses are more commonly performed using equivalent-

linear methods to approximate the effects of soil nonlinearity (e.g. FLUSH,  Lysmer et al.,

1975).

In a substructure approach, the SSI problem is broken down into three distinct parts

which are combined to formulate the complete solution.  The superposition inherent to

this approach requires an assumption of linear soil and structure behavior.  Referring to

Fig. 2.1, the three steps in the analysis are as follows:

1. Evaluation of a Foundation Input Motion (FIM), which is the motion that would occur

on the base-slab if the structure and foundation had no mass.  The FIM is dependent

on the stiffness and geometry of the foundation and soil.  Since inertial effects are

neglected, the FIM represents the effects of kinematic interaction only.

2. Determination of the impedance function.  The impedance function describes the

stiffness and damping characteristics of foundation-soil interaction.  It should account

for the soil stratigraphy and foundation stiffness and geometry, and is computed using

equivalent-linear soil properties appropriate for the in situ dynamic shear strains.

3. Dynamic analysis of the structure supported on a compliant base represented by the

impedance function and subjected to a base excitation consisting of the FIM.

The principal advantage of the substructure approach is its flexibility.  Because each step

is independent of the others, the analyst can focus resources on the most significant

aspects of the problem.
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The simplified analytical formulations which are calibrated in this study against

“empirical” data are based on the substructure approach.  Analyses of inertial interaction

effects predict the variations of first-mode period and damping ratio between the actual

“flexible-base” case (which incorporates the flexibility of both the foundation-soil system

and the structure) and a fictional “fixed-base” case (which incorporates only the

flexibility of the structure).  The flexible-base modal parameters can be used with a free-

field response spectrum to evaluate design base shear forces for the structure.  Hence,

these analyses correspond to Steps 2 and 3 of the substructure approach.  The analyses for

kinematic interaction (Step 1 of the substructure approach) predict frequency-dependent

transfer function amplitudes relating foundation and free-field motions.

SSI provisions in the Applied Technology Council (ATC, 1978) and the National

Earthquake Hazards Reduction Program (NEHRP) (BSSC, 1997) seismic design codes

are similar to portions of the inertial interaction analysis procedures described in this

chapter.  Kinematic interaction effects are neglected in the code provisions, meaning that

free-field motions and FIMs are assumed to be identical.

The literature on SSI analytical techniques is extensive, and it is not the purpose of

this chapter to review it comprehensively.  Rather, the emphasis is on providing

background for the analysis procedures used to predict SSI effects at the sites considered

in this study.  Inertial and kinematic interaction analyses are discussed in Sections 2.2 and

2.3, respectively.
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2.2 Inertial Interaction

2.2.1 System Considered

A system commonly employed in simplified analyses of inertial interaction is shown

in Fig. 2.2.  The system consists of a single degree-of-freedom structure with height h,

mass m, stiffness k, and viscous damping coefficient c.  The base of the structure is

allowed to translate relative to the free-field an amount uf and rotate an amount θ.  The

impedance function is represented by lateral and rotational springs with complex

stiffnesses ku  and kθ , respectively.  The imaginary components of the foundation

stiffness terms represent the effects of damping.
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The simple system in Fig. 2.2 can be viewed as a direct model of a single-story

building or, more generally, as an approximate model of a multi-mode, multi-story

structure which is dominated by first-mode response.   In the latter case, h is interpreted
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as the distance from the base to the centroid of the inertial forces associated with the first

vibration mode.

2.2.2 Impedance Function

In general, the impedance function is the most poorly defined component of the

model in Fig. 2.2.  As described previously, the impedance function represents the

dynamic stiffness and damping characteristics of foundation-soil interaction.

Mathematically, an impedance function is a matrix which relates the forces (e.g. base

shear and moment) at the base of the structure to the displacements and rotations of the

foundation relative to the free-field.  The terms in the impedance function are complex-

valued and frequency dependent.  When values of impedance parameters at a single

frequency must be used (as is the case for the model in Fig. 2.2), values at the

predominant frequency of the soil-structure system are selected.

(a) Basic case

In the most general case, six degrees of freedom would be necessary for each support

point on the foundation.  In practice, however, the foundation is often assumed to be

rigid, which reduces the total degrees of freedom to six.  When considering the lateral

response of a structure on a rigid foundation in a particular direction, as is the case for the

model in Fig. 2.2, only two impedance terms are generally necessary (Eq. 2.1).  In Eq.

2.1, off-diagonal terms are neglected as they are usually small.  It should be noted that

vertical excitation and torsion are neglected in the simple impedance function in Eq. 2.1. 
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A number of analytical procedures are available for the computation of impedance

functions, many of which are summarized in Luco (1980b) and Roesset (1980).  Perhaps

the most widely used solution is that for a rigid circular foundation on the surface of a

visco-elastic halfspace (Veletsos and Wei, 1971 and Veletsos and Verbic, 1973).  This

solution accounts for the three-dimensional nature of the problem and the frequency

dependence of the stiffness and damping parameters.

In the solution for a rigid disk on a halfspace, terms in the impedance function are

expressed in the form

k k a i c aj j j= +( , ) ( , )0 0υ ω υ (2.2)

where j denotes either deformation mode u or θ, ω is angular frequency (radians/sec.), a0

is a dimensionless frequency defined by a0 = ωr/VS, r = foundation radius, VS = soil shear

wave velocity, and υ = soil Poisson ratio.  Foundation radii are computed separately for

translational and rotational deformation modes to match the area (Af) and moment of

inertia (If) of the actual foundation, as follows,

r
A

r
If f

1 2 4
4

= =
⋅

π π
(2.3)

There are corresponding different values of (a0)1 and (a0)2 as well.

The real stiffness and damping of the translational and rotational springs and

dashpots are expressed, respectively, by
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k Ku u u= α (2.4a)

c
K r

Vu u
u

S
= β 1 (2.4b)

k Kθ θ θα= (2.4c)

c
K r

VS
θ θ

θβ= 2 (2.4d)

The quantities αu, βu, αθ, and βθ are dimensionless parameters expressing the frequency

dependence of the results, while Ku  and Kθ  represent the static stiffness of a disk on a

halfspace, defined by

K Gru =
−
8

2 1υ
(2.5a)

( )K Grθ υ
=

−
8

3 1 2
3 (2.5b)

where G = soil dynamic shear modulus.  Presented in Fig. 2.3 are the frequency-

dependent values of αu, βu, αθ, and βθ for υ = 0.4 based on closed form expressions in

Veletsos and Verbic (1973).  These results are similar to those obtained by Luco and

Westmann (1971) for the case of a circular foundation on the surface of an elastic

halfspace.

Values of soil shear stiffness G and hysteretic damping β used in the formulation of

impedance functions should be appropriate for the in situ shear strains.  For this study,

these parameters were established from deconvolution analyses performed with the one-

dimensional site response program SHAKE (Schnabel et al., 1972).  In these analyses,

nonlinear soil behavior is simulated by the equivalent-linear technique.  Details on soil

modeling and profile depths used in these analyses are provided in Stewart (1997).  When
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compared to recorded motions, results obtained from SHAKE deconvolution analyses

have generally been well verified at shallow depths (i.e. 50 to 100 feet, e.g. Chang et al.,

1985 and Geomatrix, 1991).  Although shear strains resulting from SSI are not modeled

by these deconvolution analyses, such strains are generally small relative to the strains

associated with the free-field ground response.

Validation studies for the above and similar impedance function formulations have

been conducted by Lin and Jennings (1984) and Crouse et al. (1990) for small surface

foundations.  In the Lin and Jennings study, a 10 x 10-foot specimen structure was

subjected to sinusoidal ground vibrations generated in an excitation structure located

about 50 feet away.  The foundation impedance at the resonant frequency of the specimen

structure was derived from the experimental results, and was consistent with theoretical

predictions by Veletsos and Wei (1971).  In the Crouse et al. (1990) study, two 4 x 4-foot

slabs (one founded essentially at the ground surface and the other having 1.5 to 2.0-foot

deep piers at the corners) were subjected to sinusoidal forced vibration testing across a

range of frequencies from 10 to 60 Hz with a shaker mounted on the slabs.  Impedance

functions evaluated from these test results were compared to theoretical functions for

layered media derived from integral equations (Apsel and Luco, 1987).  The experimental

and theoretical frequency-dependent impedances agreed reasonably well given the

uncertainty in near-surface VS data at the two sites, though the agreement was

considerably better for the slab without corner piers.  Theoretical results from Apsel and

Luco (1987) and Veletsos and Verbic (1973) are nearly identical for surface foundations,

hence these experimental results effectively validate both formulations.
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Despite the demonstrated utility of the impedance function formulation by Veletsos

and Verbic, commonly encountered conditions such as nonuniform soil profiles,

embedded, non-circular, or flexible foundations, and the presence of piles or piers are not

directly modeled by these procedures.  The effects of such conditions (except piles or

piers) on foundation impedance can be approximately simulated with adjustments to the

basic solution, as discussed in Parts (b) through (e) below.

(b) Nonuniform soil profiles

Nonuniform soil profiles can often be characterized by gradual increases in stiffness

with depth, or by a very stiff layer underlying relatively soft, surficial layers.  For profiles

having gradual increases in stiffness with depth, Roesset (1980) found that using soil

properties from a depth of about 0.5⋅r gave halfspace impedances which reasonably

simulated the impedance of the variable profile.  In this study, equivalent halfspace

velocities were computed as VS = r1/tr-0, where tr-0 is the travel time for vertically

propagating shear waves to travel from a depth r1 to the ground surface.  These equivalent

halfspace velocities are often similar to the actual VS at a depth of 0.5⋅r1.  Details on the

calculation of VS for individual sites are presented in Stewart (1997).

For the case of a finite soil layer overlying a much stiffer material, the key

considerations are an increase in the static stiffness and changes in the frequency

dependent variations of stiffness and damping.  The increased static stiffnesses can be

estimated as follows (Kausel, 1974),



21

( )

( )

K K
r
d

K K
r
d

u FL u
s

FL
s

= +








= +








1
1
2

1
1
6

1

2
θ θ

(2.6)

where (Ku)FL and (Kθ)FL are the static horizontal and rocking stiffnesses of the foundation

on finite soil layer, and dS is the depth of the layer.  The frequency dependent variations

of stiffness terms follow the general trends for a halfspace in Fig. 2.3, but have

oscillations associated with the natural frequency of the stratum at low levels of soil

damping.  For hysteretic damping exceeding about 7%, Roesset (1980) found that the

oscillations can be neglected.  With regard to damping, the key issue is a lack of radiation

damping at frequencies less than the fundamental frequency of the finite soil layer.

Halfspace damping ratios can be used for frequencies greater than the soil layer

frequency, and a transition to zero radiation damping at smaller frequencies can be

defined per Elsabee and Morray (1977).

(c) Foundation embedment

Foundation embedment effects were investigated by Elsabee and Morray (1977) for

the case of a circular foundation embedded to a depth e into a homogeneous soil layer of

depth dS (Fig. 2.4).  It was found that the static horizontal and rocking stiffness for such

foundations [(KU)FL/E and (Kθ)FL/E] is approximated as follows for r/dS <0.5 and e/r<1:
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Coupling impedance terms were found to be small relative to (Ku)FL/E and (Kθ)FL/E for

small embedment ratios (i.e. e/r < 0.5).  Elsabee and Morray suggested that the frequency

dependence of the foundation stiffness and damping terms could be approximated as per

Eqs. 2.4a-d (which strictly apply only for a rigid, circular surface foundation on a

halfspace).  These recommendations have been adopted into the NEHRP (BSSC, 1997)

code provisions, with the exception of the frequency dependence stiffness terms (α)

which are assumed to be unity.
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Approximate normalized impedance factors for a cylindrical foundation embedded in

a halfspace obtained from Eq. 2.7 are compared to a more rigorous analytical solution

derived from integral equations (Apsel and Luco, 1987) in Fig. 2.5.  The approximate

curves were computed as the product of dimensionless impedance factors αu, αθ, βu, and

βθ and the first modifier on the right hand side of Eq. 2.7.  Both solutions apply for a

uniform visco-elastic halfspace with β=1%, ν = 0.25, and perfect bonding between the

soil and foundation.  The comparisons are generally poor, with the exception of stiffness
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terms αu and αθ, which are reasonably well predicted for e/r ≤ 0.5, and in the case of αθ,

for a0 < 1.5 as well.  In the case of damping, the comparison in Fig. 2.5 is essentially one

of radiation damping effects due to the low β value in this example.  The approximation

grossly underpredicts radiation damping effects even at moderate embedments (e.g. e/r =

0.5) at all frequencies.  However, this underprediction of radiation damping may be

tolerable in some situations, because at the low frequencies typical of many structures

(a0<1), radiation damping effects are small relative to hysteretic soil damping, and

consequently estimates of total foundation damping may be reasonable.

Field vibration testing of a small (10 x 10 ft) embedded structure (Lin and Jennings,

1984) found that Elsabee and Morray’s predictions of the embedment effect on rocking

stiffness and damping were fairly accurate, especially for low embedment ratios (e/r =

0.44).  However, translational stiffness and damping were significantly underpredicted for

both embedment ratios tested (0.44 and 0.90).  Forced vibration testing of a nine-story

reinforced concrete building with a single-level basement (e/r = 13/45 ft = 0.29) by Wong

et al. (1988) revealed low frequency (a0 ≈ 0.2 to 0.4) impedance function ordinates for

rocking that were in excellent agreement with the Apsel and Luco theoretical predictions

(and, by inference, the approximate solution as well).  Horizontal stiffness was found to

be overpredicted by the Apsel and Luco theory by about 20 to 40%, while damping

comparisons were inconclusive.

In this study, embedment effects on foundation impedance were evaluated with two

separate analyses.  The first analysis is based on static foundation stiffnesses established

per Eq. 2.7 (with coupling terms assumed to be zero) and frequency dependent

modifications to stiffness and damping terms with the αu, αθ, βu, and βθ factors in Eq.
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2.4a-d.  The second analysis, formulated by Bielak (1975), more rigorously incorporates

soil/basement-wall interaction effects into the foundation impedance function, and hence

is similar to Apsel and Luco (1987).  This second formulation is discussed further in

Section 2.2.3.

(d) Foundation shape

Conventional practice has been that foundations of arbitrary shape are analyzed as

equivalent circular mats, provided that the foundation aspect ratio in plan (L/B) is less

than 4:1 (Roesset, 1980).  As noted in Eq. 2.3, an equivalent radius for translational

stiffness is derived by equating the area of the mats, while an equivalent radius for

rocking stiffness is derived by equating the moment of inertia of the mats.  These criteria

have been adopted into the NEHRP (BSSC, 1997) code.

Dobry and Gazetas (1986) reviewed the literature for impedance function solutions

for foundations of various shapes including circles and rectangles with aspect ratios of 1

to ∞.  Their results generally confirmed that the use of equivalent circular mats is an

acceptable practice for aspect ratios < 4:1, with the notable exception of dashpot

coefficients in the rocking mode.  As shown in Fig. 2.6, dimensionless radiation damping

coefficients crx and cry (for longitudinal and transverse rocking, respectively) are seen to

be underestimated by the equivalent disk assumption at low frequencies.  This is a

consequence of the tendency for rocking vibrations to be dissipated into the soil primarily

via the ends of the foundation.  Hence, as L/B increases, the two ends act increasingly as

independent wave sources with reduced destructive interference between waves

emanating from the foundation.  For the case of longitudinal rocking, damping can be
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underpredicted by more than 100% for aspect ratios of L/B ≈ 4.  For higher frequencies

(a0 > 3 - 4, not shown), the results for the various aspect ratios converge to crx, cry ∼ 1.

This occurs because these high frequency waves have short wavelengths, so destructive

interference between the waves decreases.

In this study, radiation dashpot coefficients for oblong, non-circular foundations were

corrected according to the results in Fig. 2.6.  This correction was made by multiplying

the radiation damping component of the disk dashpot coefficients from Part (a) by

(cr)L/B/(cr)L/B=1, where the cr values were determined at the a0 value corresponding to the

structure’s fundamental frequency.

(e) Foundation flexibility

The effects of foundation flexibility on impedance functions for surface disk

foundations have been investigated by Iguchi and Luco (1982) for the case of loading

applied through a rigid central core, Liou and Huang (1994) for the case of thin perimeter

walls, and Riggs and Waas (1985) for the case of rigid concentric walls (Fig. 2.7).  These

studies have generally focused on foundation flexibility effects on rocking impedance; the

horizontal impedance of non-rigid and rigid foundations are similar (Liou and Huang,

1994).

A key parameter in the evaluation of foundation flexibility effects on rocking

impedance is the ratio of the soil-to-foundation rigidity,

η = Gr
D

3
(2.8)

in which G is the soil dynamic shear modulus and D is the foundation’s flexural rigidity,
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where Ef, tf, and νf are the Young’s modulus, thickness, and Poisson’s ratio of the

foundation, respectively.  For the case of rocking impedance, the significance of

foundation flexibility effects depends on the wall configuration on the disk.  As shown in

Fig. 2.8, these effects are most important for the rigid central core case, for which

significant reductions in stiffness and damping are possible.  The reductions are greatest

for narrow central cores and large values of relative soil/foundation rigidity (i.e. η = 10 to

1000).  For the case of thin perimeter walls, the foundation impedances are reasonably

close to rigid base values for a0 < 3.  For the concentric wall case considered by Riggs

and Waas (1985), it was similarly found that flexible foundations behave similarly to

rigid foundations at low frequencies.
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In this study, corrections for foundation flexibility effects were made to rocking

impedance terms for structures having central core shear walls using the curves in Fig.

2.8.  This correction was made by multiplying the disk rocking stiffness and dashpot

coefficients from Part (a) by (αθ)flex/(αθ)rigid and (βθ)flex/(βθ)rigid, respectively, where the αθ

and βθ values were determined at the a0 value corresponding to the structure frequency.

No corrections to rocking impedance terms were made for other wall configurations, nor

were corrections applied to horizontal impedance terms.

(f) Piles or piers

The influence of pile foundations on impedance functions cannot easily be accounted

for with simplified analyses.  Many analytical techniques are available for evaluating the

impedance of pile supported foundations (e.g. Novak, 1991 and Gohl, 1993), but a review

of such techniques is beyond the scope of this chapter.  The effects of piles/piers were not

explicitly accounted for in the development of impedance functions for the analyses in

this study.  Instead, the influence of foundation type on the final results was evaluated

empirically, as discussed in Chapter 5.

2.2.3 Results

Veletsos and Meek (1974) found that the maximum seismically induced

deformations of the oscillator in Fig. 2.2 could be predicted accurately by an equivalent

fixed-base single degree-of-freedom oscillator with period 
~
T  and damping ratio 

~ζ .

These are referred to as “flexible-base” parameters, as they represent the properties of an
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oscillator which is allowed to translate and rotate at its base (i.e. Fig. 2.2).  The flexible-

base period is evaluated from (Veletsos and Meek, 1974),

~
T
T

k

k

kh
ku

= + +1
2

θ
(2.10)

where 7 is the fixed-base period of the oscillator in Fig. 2.2 (i.e. the period that would

occur in the absence of base translation or rocking).  The flexible-base damping ratio has

contributions from the viscous damping in the structure as well as radiation and hysteretic

damping in the foundation.  Jennings and Bielak (1973) and Veletsos and Nair (1975)

expressed the flexible-base damping 
~ζ  as

( )
~ ~

~
ζ ζ ζ= +0 3

T T
(2.11)

where 
~ζ0  is referred to as the foundation damping factor and represents the damping

contributions from foundation-soil interaction (with hysteretic and radiation components).

A closed form expression for 
~ζ0  is presented in Veletsos and Nair (1975).

The relationships between the fixed- and flexible-base oscillator properties depend

on aspect ratio h/r2, soil Poisson Ratio υ, soil hysteretic damping ratio β, and the

following dimensionless parameters:

σ = V T hS (2.12)

γ
ρπ

= m

r h1
2

(2.13)

Parameters σ and γ represent the ratio of the soil-to-structure stiffness and structure-to-

soil mass, respectively.  For conventional building structures, σ > 2 and γ ≈ 0.1 to 0.2 [a
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representative value of γ = 0.15 is recommended by Veletsos and Meek (1974)].  Both

~
/T T  and 

~ζ0  are sensitive to σ, while the sensitivity to γ is modest for 
~

/T T  (± 10 to

15% error), and low for 
~ζ0  (Aviles and Perez-Rocha, 1996).

For the case of a rigid circular foundation on the surface of a visco-elastic halfspace

(impedance defined in Section 2.2.2), analytical results from Veletsos and Nair (1975) for

~
/T T  and 

~ζ0  vs. 1/σ are shown in Figs. 2.9 and 2.10, respectively.  The results show that

~
T  is always lengthened relative to 7, and that the period lengthening ratio (

~
/T T )

increases with 1/σ and h/r for h/r > 1.  This implies that the ratio of structure-to-soil

stiffness (1/σ) is a critical factor controlling the period lengthening, and that for a given

value of 1/σ, period lengthening increases for taller structures (i.e. higher h/r) with more

overturning moment.  The flexible base damping 
~ζ  can actually increase or decrease

relative to ζ depending on the period lengthening in the structure and the foundation

damping factor 
~ζ0 .  In Fig. 2.10, 

~ζ0  is seen to increase with 1/σ and decrease with h/r,

indicating that lateral movements of the foundation (which dominate at low h/r) dissipate

energy into soil more efficiently than foundation rocking (which dominates at high h/r).

The contributions to foundation damping from radiation and hysteretic damping are

compared in Fig. 2.10; the significance of hysteretic damping is seen to increase with

increasing h/r due to the decreased radiation damping effect.

For the case of a rigid circular foundation embedded into a visco-elastic soil,

analytical results for 
~

/T T  and 
~ζ0  vs. 1/σ are shown in Fig. 2.11 for the analytical

formulation presented above (i.e. the Veletsos and Nair (V & N) model) as well as two
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others [Bielak (1975) and Aviles and Perez-Rocha (A & P-R), 1996].  The V & N and

Bielak solutions are for a foundation embedded into a halfspace, while the A & P-R

solution is for a thick finite layer (dS/r = 10).  The SSI models solved in the Bielak and V

& N approaches are similar, except that dynamic soil/basement-wall interaction effects on

foundation impedance are incorporated into the Bielak formulation.  Similarly, the only

significant difference between the A & P-R and Bielak models is the finite soil layer used

by A & P-R.  For the plots in Fig. 2.11, embedment corrections for the V & N approach

were made according to Eq. 2.7.  For the case of zero embedment (e/r = 0), the three

formulations yield essentially identical results with the exception of relatively high

damping from the A & P-R model.  For the case of e/r = 1, increases in damping and

decreases in period lengthening are predicted by all three models.  The Bielak model

yields the highest damping predictions.  V & N and A & P-R indicate smaller damping

due to the lack of a dynamic basement wall-soil interaction model (V & N) and the finite

soil layer (A & P-R).  It should be noted that the embedment ratio e/r = 1 is approaching

the limit of validity for the expression in Eq. 2.7, and results from the three formulations

are more consistent for lower e/r.

In this study, the analysis by Veletsos and Nair (1975) was generally used with

appropriate modifications to the foundation impedance for nonuniform soil profiles,

foundation embedment (i.e. Eq. 2.7), foundation shape, and foundation flexibility effects.

To more accurately model the stiffness and damping of embedded foundations, analyses

were also performed using the Bielak (1975) approach with appropriate modifications for

nonuniform soil profiles and foundation shape and flexibility effects.  For subsequent
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reference, these analyses are termed the “modified Veletsos” and “modified Bielak”

formulations.

2.2.4 Calibration of Analysis Results with Field Performance Data

Research efforts have been undertaken to calibrate analytical techniques for SSI

using seismic field performance data from the Humboldt Bay Nuclear Power Plant

(Valera et al., 1977) and the Lotung 1/4-scale containment model (Bechtel Power

Corporation, 1991).  Several test structures have also been examined by Japanese

researchers (e.g. a 12.5 m tower, Ganev et al., 1994, and a 31 m scaled containment

structure, Hanada et al., 1988).  The objectives of these studies were generally to compare

recorded structural motions with predicted analytical motions.

The instrumented structure at the Humboldt site essentially consists of a deep caisson

(there is no significant above-ground structure), so the simplified analytical techniques

discussed above are not applicable.  Fixed- and flexible-base structural periods and

damping ratios were evaluated for the Lotung site, though these parameters were not

compared to analytical predictions of 
~

/T T  and 
~ζ0 .  However, relatively sophisticated

analyses of the soil-structure system using the SASSI (Lysmer et al., 1981) and CLASSI

(Luco, 1980b) programs were successful at reasonably accurately reproducing the overall

structural response, and hence by inference the flexible-base modal parameters.  The

analytical formulation in the CLASSI program is based on a substructure procedure

similar to that outlined in this section.  The accuracy of the CLASSI analyses relative to

the Lotung data reinforces the validity of these substructure procedures.  Similar

confirmation of simple SSI models was obtained in back-analyses of data from the
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Japanese test structures.  It should be noted that the Humboldt and Lotung sites were

included in this study as sites A3 and A46.  Data from the Japanese sites could not be

obtained for this study.

A number of studies have developed two- or three-dimensional frame models of

instrumented structures, verified the model’s accuracy using periods identified from

recorded data, and investigated SSI effects by varying the base fixity condition (e.g.

Wallace and Moehle, 1990 and Fenves and Serino, 1992).  The study by Wallace and

Moehle examined the response of a 22-story shear wall building in Chilé under forced

vibration testing, low-level (0.05g) earthquake shaking, and moderate-level (0.18g)

shaking.  From three-dimensional frame analyses, the period lengthening was found to be

15%, 22%, and 43% in the forced vibration and earthquake shaking conditions,

respectively.  For the moderate-level shaking condition, the ATC (1978) procedure

predicted 37% period lengthening, which is in good agreement with the 43% from frame

analyses.  Comparisons were not made for the lower-level shaking conditions.  Fenves

and Serino examined the response of a 14-story concrete-frame warehouse structure (site

A29 in this study) during the 1987 Whittier Earthquake.  Fixed-base periods were not

reported, but changes in base shear resulting from SSI effects were found to be reasonably

predicted by the ATC procedure (using smoothed free-field spectra).

Poland et al. (1994) analyzed the effects of SSI on base shear in four buildings using

two simple analytical techniques (FLUSH and ATC code provisions) and compared these

results to reductions in the base shear calculated using a single degree-of-freedom

structural model subjected to recorded free-field and foundation motions (so-called “time

history” analyses).  Poor agreement between the analytical and “time history” results was
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found.  However, it is not clear how to interpret these results as the modal parameters

used in the “time history” analyses are not reported.  SSI effects on structural response

can be more rationally assessed by comparing fixed- and flexible-base modal parameters.

It should be noted that the four buildings studied by Poland et al. are also examined in

this study (sites A6, A10, A12, and A29).

In addition to the above research efforts, a number of calibration studies for

impedance functions have been performed (see Section 2.2.2), and modal parameters of

several structures have been evaluated using various system identification techniques

with some inferences made about SSI effects (see Stewart, 1997 for references).

However, fixed- and flexible-base modal parameters were seldom directly compared in

these studies.

It appears that no previous studies have attempted to evaluate on a large scale the

fixed- and flexible-base modal parameters of structures subjected to significant levels of

seismic excitation for the purpose of calibrating simplified analytical procedures such as

those in the ATC and NEHRP codes.  This is the principle objective of this study.

2.3 Kinematic Interaction

As noted in Section 2.1, kinematic interaction generally results from base-slab

averaging, deconvolution/embedment effects, and wave scattering effects.  At present,

relatively little is known about the effects of wave scattering on base-slab motions, as its

effects are almost invariably combined with more significant base-slab averaging and

embedment effects, which are the focus of this section.
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2.3.1 Base-Slab Averaging

For vertically incident, coherent wave fields, the motion of a rigid surface foundation

is identical to the free-field motion.  Base-slab averaging effects result from wave fields

which have an angle of incidence relative to the vertical, αV, or which are incoherent in

time and space.  Incoherence of seismic waves results from different wave ray paths (i.e.

due to laterally traveling seismic waves in the underlying bedrock) and local

heterogeneities in the geologic media through which the seismic waves have traveled.

In the presence of incoherent or non-vertically incident wave fields, translational

base-slab motions are reduced relative to the free-field, and torsional rotation of the base-

slab is introduced.  Rocking of the base-slab can also occur in the presence of inclined SV

or P waves, but is negligible for SH waves.  The reduction of base-slab translation, and

the introduction of torsion and rocking, are all effects which tend to become more

significant with increasing frequency.  The frequency-dependence of these effects is

primarily associated with the increased effective size of the foundation relative to the

seismic wavelengths at higher frequencies.  In addition, incoherence effects are greater at

higher frequencies.

Veletsos and Prasad (1989) and Veletsos et al. (1997) evaluated the response of a

rigid, massless disk of radius r and a rectangle of dimension 2a by 2b on the surface of an

elastic halfspace to incoherent SH waves propagating either vertically or at an angle αV to

the vertical (Fig. 2.12).  The incident motions are assumed to be polarized in the x-

direction, and the effective horizontal propagation of inclined waves is in the y-direction.

A result of the analyses is transfer functions relating the horizontal and torsional motions
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of the foundation to the free-field motions, thus providing a quantification of base-slab

averaging effects.  Similar analytical formulations were developed by Luco and Wong

(1986) for rectangular foundations and Luco and Mita (1987) for circular foundations.

The Veletsos approach is presented here because of the relative simplicity of its

formulation.

A key step in the development of the transfer functions is the numerical modeling of

the spatial variation of the free-field ground motions.  The temporal variation of these

motions is specified by a space invariant power spectral density (psd) function, Sg(ω).

The spatial variation of the incoherent free-field motions is defined by a cross spectral

density function,
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where r1 and r2 are position vectors for two points, and (VS)H is the apparent horizontal

velocity of the wave front, (VS)H = VS/sinαV.  In Eq. 2.14, the exponential term represents

the wave passage effect (due to nonvertically incident waves), and the Γ term represents

the ground motion incoherence effect.  The coherence function used in the Veletsos

formulations is,
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where κ is a dimensionless incoherence factor which reportedly can be quantified by κ/VS

∼ (2-3)×10-4 sec/m (Luco and Wong, 1986).

Coherence functions have been modeled using exponential functions similar to Eq.

2.15 by a number of researchers (Luco and Wong, 1986; Somerville et al., 1991; Novak,
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1987).  More refined coherence functions defined using five parameters in the regression

have been developed by Abrahamson (1988, 1992), who also performed the regression

using tanh-1(Γ) instead of Γ.  Abrahamson cautions that functional forms of coherence not

using tanh-1(Γ) may not be appropriate because Γ is not normally distributed but tanh-1(Γ)

is approximately normally distributed.  Nevertheless, the exponential coherence function

in Eq. 2.15 was retained for this study due to the relative simplicity of its algebraic form

and its ability to capture the decay in coherence with increasing separation and frequency

(though not in the mathematically ideal form).  The primary errors introduced by the use

of Eq. 2.15 are overpredictions of coherence at large distances (i.e. > 100 m) and low

frequencies (i.e. < 1 Hz) (Novak, 1987).

Using spatial averaging procedures with the cross spectral density function in Eq.

2.14 and the coherence function in Eq. 2.15, Veletsos and Prasad (1989) and Veletsos et

al. (1997) developed expressions for the psds of the horizontal (Sx) and torsional (Sφ)

motions of the base-slab in terms of Sg(ω) for circular and rectangular foundation

geometries, respectively.  In the presentation of results, the torsional motions were

represented by circumferential motions of the base-slab in the x-direction (i.e. Scir=r⋅Sφ

for circular foundations and b⋅Sφ for rectangular foundations).

The transfer function amplitudes associated with base slab averaging are presented in

Fig. 2.13 for circular and rectangular foundations subject to vertically incident incoherent

waves, and Fig. 2.14 for nonvertically incident coherent waves.  These transfer functions

are plotted against the dimensionless frequency parameter ~a0 , which is defined as

follows for circular and rectangular footings, respectively,
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where a0 = ωr/VS.  The definition of the ~a0  factor given in Eq. 2.16 for rectangular

foundations applies for identical wave incoherence factors κ in the x and y directions.

Figs. 2.13 and 2.14 indicate that the lateral transfer functions (S Sx g ) for circular

and various rectangular geometries are similar, regardless of the type of wave field.  The

near equivalence of the results for different aspect ratios (a/b) of rectangular foundations

suggests that the lateral transfer function primarily depends on the total area of the

foundation.  This result is a product of the model formulation in which spatial variations

of ground motion only result from random incoherence (which is assumed to be identical

in both horizontal directions) or nonvertically incident waves.  That is, the effects of

“traveling waves,” which might result in a temporal incoherence of incident waves across

a foundation, has not been considered.  Such effects would be sensitive to the plan angle

of propagation of the traveling waves relative to the foundation and the aspect ratio of the

foundation (but might only be significant for very large foundations).

The torsional transfer function results show a relatively high degree of sensitivity to

a/b and the type of wave field.  Higher torsional motions occur for lower a/b and

nonvertically incident coherent wave fields.
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2.3.2 Embedment

When subjected to vertically propagating coherent SH waves, embedded foundations

experience a reduction in base-slab translational motions relative to the free-field, and

rocking motions are introduced.  This rocking is not a product of base moment associated

with structural inertia, as structure and foundation masses are neglected in the analysis of

kinematic interaction.  Rather, the rocking is caused by incompatible shear strains along

the sides of the excavation and the free-field.  Roesset (1980) suggests that these

embedment effects are likely to be significant for e/r greater than about 0.15.  Analytical

and empirical studies have been performed to examine embedment effects on foundation

input motions (FIMs), the results of which are presented in the following sections.

(a) Analytical studies

Analytical studies of embedment effects have focused on the evaluation of transfer

functions expressing the amplitude ratio of base-slab translational and rocking motions to

free-field motions (e.g. Elsabee and Morray, 1977 and Day, 1977).  These formulations

are generally based on assumed vertically propagating coherent waves, so that the base-

slab averaging effects discussed in Section 2.3.1 are negligible.

Day (1977) used finite element analyses to evaluate the base motions of a rigid

cylindrical foundation embedded in a uniform elastic half space (β = 0, ν = 0.25) and

subjected to vertically incident, coherent SH waves.  Elsabee and Morray (1977)

performed similar studies but for the case of a visco-elastic soil layer of finite depth over

a rigid base (β = 0.05 and ν = 0.33).  The amplitude of the transfer functions for

translation and rocking are shown in Fig. 2.15 for the halfspace and Fig. 2.16 for the





47

finite soil layer.  The only significant differences between the finite soil layer and

halfspace results are high frequency (a0 > 1.5) oscillations in the finite soil layer case.

The results for embedment ratios e/r = 0.5, 1.0, and 2.0 (halfspace) and 0.5 and 1.0 (finite

soil layer) indicate significant filtering of translational motions for a0 > 0.5 and the

development of significant rocking for a0 > 1.  At low frequencies (a0 < 1.5), the filtering

of foundation motions and the magnitude of rocking motions increases with increasing

embedment ratio, while at higher frequencies there is little sensitivity to embedment ratio.

These results can be contrasted with the behavior of a surface foundation which would

have no reduction of translational motions and no rocking motions when subjected to

vertically incident coherent shear waves.

As part of the work by Elsabee and Morray, approximate transfer functions were

proposed for the translation and rocking motions of the circular foundation as follows,
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where a r e0 2= ⋅π .  Normalized frequency a0  corresponds to the fundamental

frequency of the soil from the surface to depth e (a f r VS0 12= π  where f V eS1 4= ).  In

Fig. 2.17, these approximate transfer functions are compared to the halfspace (Day, 1977)

and finite soil layer (Elsabee and Morray, 1977) solutions for embedment ratios of  e/r =

0.5, 1.0, and 2.0.  The approximation is reasonable for each embedment ratio and both

profiles.
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These results for an embedded rigid cylinder subjected to vertically incident coherent

SH waves have been extended for cases of (1) soil properties varying with depth (Elsabee

and Morray, 1977), (2) horizontally propagating coherent SH waves (Day, 1977), and (3)

non-circular foundations (Mita and Luco, 1989) as follows:

• For soil properties which vary with depth, Elsabee and Morray found that the

approximate transfer functions in Eq. 2.17-2.18 remain valid provided an averaged VS

across the embedment depth is used.

• For the case of horizontally propagating coherent SH waves, Day found that the base

rocking was practically negligible, the filtering of horizontal motions was significant

but was relatively insensitive to e/r, and a significant torsional response was induced

at high frequencies (a0 > 1.5).  It should be noted, however, that horizontally

propagating shear waves are generally of negligible engineering significance in SSI

problems because components of ground motion with frequencies above about 1 Hz

tend to attenuate rapidly with distance (Chen et al., 1981).

• Mita and Luco found that an embedded square foundation could be replaced by an

equivalent cylinder without introducing significant error.  The radius of the equivalent

cylinder was defined as the average of the radii necessary to match the area and

moment of inertia of the square base.

(b) Empirical studies

Studies by Seed and Lysmer (1980), Chang et al. (1985), and Johnson and Asfura

(1993) have documented reductions in ground motion with depth using both downhole

free-field arrays and comparisons of basement and free-field motions.  These data are not
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repeated here; however, it is noted that both data sets (free-field/downhole and free-

field/basement) consistently indicated reductions of peak ground acceleration and high

frequency spectral ordinates with depth.  It was also concluded by Seed and Lysmer that

deconvolution analytical procedures which assume vertically propagating shear waves

(e.g. the computer program SHAKE, Schnabel et al., 1972) simulate these effects

reasonably well.

Ishii et al. (1984) developed empirical transfer functions for translational motions

using earthquake recordings from 18 partially buried tanks in Japan.  However, the

regression analyses did not include e/r as a variable.  Hence the results are likely of

limited value as e/r appears to be significant based on the analytical studies discussed in

Part (a).

Most structures are not instrumented sufficiently at the foundation-level to measure

base rocking, so relatively little data on this effect is available.  Even for structures which

are instrumented to record base rocking, separation of the kinematic and inertial rocking

effects would be impossible without making assumptions about the foundation

impedance and wave field, so purely empirical transfer functions for kinematic base

rocking are difficult to formulate and have not been developed to date.

2.4 Summary

In this chapter, a number of simplified analytical techniques have been presented for

performing both inertial and kinematic SSI analyses.  The intent of these analysis

procedures is to predict period lengthening ratios and foundation damping factors (inertial
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interaction) and foundation/free-field transfer functions (kinematic interaction).  Key

aspects of these analytical procedures are summarized below.

2.4.1 Inertial Interaction

For analyses of inertial interaction effects, the objectives are predictions of first-mode

period lengthening 
~

/T T  and foundation damping factor 
~ζ0 .  The necessary input

parameters are:

• Soil conditions:  characterization of the site as a halfspace or finite soil layer over

rigid base; shear wave velocity VS and hysteretic damping ratio β which are

representative of the site stratigraphy and the level of ground shaking; representative

soil Poisson’s ratio ν.

• Structure/Foundation Characteristics:  effective height of structure above foundation

level, h; embedment, e; foundation radii which match the area and moment of inertia

of the actual foundation, r1 and r2; appropriate corrections to the foundation

impedance for embedment, shape, and flexibility effects.

• Fixed Base 1st Mode Parameters:  period and damping ratio, T and ζ.

Using these data, the following steps are carried out:

1. Evaluate the foundation impedance function at an assumed period for the flexible-

base structure 
~
T .  Static foundation stiffnesses are computed first according to Eq.

2.5 with appropriate modifications for finite soil layer and embedment effects (Eqs.

2.6 and 2.7).  Dynamic coefficients αu, αθ, βu, and βθ are then evaluated for the

assumed 
~
T  using equations in Veletsos and Verbic (1973) with appropriate
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modifications to βθ to account for foundation shape effects, and to αθ and βθ to

account for flexible foundation effects.

2. Calculate dimensionless parameters σ and γ using Eqs. 2.12 and 2.13.  For most

structures, it is assumed that γ= 0.15.

3. Estimate the period lengthening and damping using Eqs. 2.10 and 2.11, calculate a

new estimate of 
~
T .

4. Repeat steps 1 to 3 until the dynamic coefficients αu, αθ, βu, and βθ are estimated at

the actual system period.

5. For embedded foundations, repeat the analyses for 
~

/T T  and 
~ζ0  using the

formulation by Bielak (1975).

The procedures in steps 1 to 4 are referred to as the “modified Veletsos” formulation.

The “modified” term refers to the extension of the basic model considered in Veletsos

and Nair (1975) to account for embedded, non-circular, and flexible foundations, and

non-uniform soil profiles.  Similarly, the Bielak (1975) procedure applied in Step 5 to

embedded structures is referred to as the “modified Bielak” formulation.

2.4.2 Kinematic Interaction

For surface foundations, analytical predictions of base-slab averaging effects are

made using the transfer functions in Figs. 2.13 and 2.14.  A topic of recommended future

study is to compare these analytical transfer functions with transfer functions computed

from recordings of surface foundation and free-field motion.  From such a comparison,

the effects of ground motion incoherence and incident wave inclination could be
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approximately quantified.  Similarly, for embedded structures, the analytical transfer

functions in Eqs. 2.17 and 2.18 should be validated against field performance data.
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