CONTENT

1- HYDROENERGY 1
1.1- Renewable energy concept 1
1.2- Hydroelectricity: energy conversion and hydropower principles 3
1.3- Environmental considerations 7

2- GENERAL TYPES OF SMALL HYDROPOWER SCHEMES 9
2.1- Classification of hydropower plants 9
2.2- Hydropower schemes 10
2.3- Site location 13

3- HYDROPOWER AND WATER USES 15
3.1- Power generation and different sector-users 15
3.2- The benefit of small hydropower plants 19

4- HYDROLOGY 21
4.1- Introduction. Scope of the studies 21
4.2- Basic data required for the hydrologic study 22
4.3- Mean annual And mean daily flow series 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1- Introduction</td>
<td>25</td>
</tr>
<tr>
<td>4.3.2- Annual precipitation and annual flow. Mean daily flow series</td>
<td>26</td>
</tr>
<tr>
<td>4.3.3- Mean annual flow duration curve</td>
<td>31</td>
</tr>
<tr>
<td>4.4- Energy Evaluation</td>
<td>34</td>
</tr>
<tr>
<td>5- HYDRAULIC DESIGN OF SMALL POWER PLANTS</td>
<td>39</td>
</tr>
<tr>
<td>5.1- Introduction</td>
<td>39</td>
</tr>
<tr>
<td>5.2- Layout schemes</td>
<td>40</td>
</tr>
<tr>
<td>5.2.1- Intakes</td>
<td>40</td>
</tr>
<tr>
<td>5.2.1.2- Minimum submergence</td>
<td>40</td>
</tr>
<tr>
<td>5.2.1.3- Bottom intake</td>
<td>44</td>
</tr>
<tr>
<td>5.2.2- Protection rack</td>
<td>48</td>
</tr>
<tr>
<td>5.2.3- Sedimentation or desilting basin</td>
<td>51</td>
</tr>
<tr>
<td>5.2.4- Weir</td>
<td>54</td>
</tr>
<tr>
<td>5.3- Sluice bottom outlet</td>
<td>57</td>
</tr>
<tr>
<td>5.4- Conveyance system</td>
<td>58</td>
</tr>
<tr>
<td>5.4.1- General layout</td>
<td>58</td>
</tr>
<tr>
<td>5.4.2- Head losses and net head</td>
<td>60</td>
</tr>
<tr>
<td>5.4.3- Canals</td>
<td>66</td>
</tr>
<tr>
<td>5.4.3.1- Uniform and steady state hydraulic regimes</td>
<td>67</td>
</tr>
<tr>
<td>5.4.3.2- Boundary conditions</td>
<td>69</td>
</tr>
<tr>
<td>5.4.3.3- Forebays</td>
<td>69</td>
</tr>
<tr>
<td>5.4.4- General remarks about mixed circuit</td>
<td>71</td>
</tr>
<tr>
<td>5.4.5- Penstocks</td>
<td>72</td>
</tr>
<tr>
<td>5.5- Powerhouses</td>
<td>75</td>
</tr>
<tr>
<td>5.6- Analysis of hydropower schemes</td>
<td>78</td>
</tr>
<tr>
<td>6- SMALL HYDRAULIC TURBINES</td>
<td>79</td>
</tr>
<tr>
<td>6.1- Types of turbines</td>
<td>79</td>
</tr>
<tr>
<td>6.2- Turbine similarity laws and specific speed (Ns)</td>
<td>84</td>
</tr>
<tr>
<td>6.3- Turbine efficiency</td>
<td>89</td>
</tr>
</tbody>
</table>
7- HYDRAULIC TRANSIENTS AND DYNAMIC EFFECTS

7.1- Introduction
7.2- Canal systems
7.3- Pressurised systems
 7.3.1- Typical transient regimes
 7.3.2- Preliminary analysis
 7.3.3- Governing equations
7.4- Overspeed dynamic effects
 7.4.1- Overspeed runner control
 7.4.2- Overspeed effect on turbine discharge
 7.4.3- Turbine overspeed effects on waterhammer
7.5- Special protection devices
 7.5.1- Introduction
 7.5.2- Surge tanks
 7.5.3- Differential surge tank
 7.5.4- Air vessel
 7.5.5- Synchronised valve or relief valve
 7.5.6- Flywheel
 7.5.7- Protection devices behaviour
 7.5.7.1- Analysis of a surge tank
 7.5.7.2- Analysis of an air vessel
7.6- Examples
7.7- Other protection devices and procedures
7.8- Integrated analysis and design
7.9- Case studies

8- ELECTRICAL EQUIPMENT

8.1- Generators
 8.1.1- Synchronous generators
 8.1.2- Asynchronous generators
8.2- Electrical installations
 8.2.1- Main transformer
 8.2.2- Switchgear
 8.2.3- Control equipment
 8.2.4- Electrical protection
8.3- Control system considerations
 8.3.1- Introduction 151
 8.3.2- Speed control 152
 8.3.3- Water level regulation 152
 8.3.4- Generator output power control 153
 8.3.5- Voltage and power factor regulation 153
 8.3.6- Flood level control 153
 8.3.7- Blade control of Kaplan turbines 153
 8.3.8- Analytical representation 154
 8.3.9- Switchyard 154

9- ENVIRONMENT
 9.1- Environmental impact assessment 155
 9.2- Identification of impacts 157
 9.3- Activities associated with hydropower plants 161
 9.4- Reference criteria to support environmental studies 163
 9.5- Safety 163

10- ECONOMIC ANALYSIS
 10.1- Introduction. Costs and benefits 167
 10.2- Economic analysis 172
 10.2.1- Introduction 172
 10.2.2- Constant market prices system concept 172
 10.2.3- Discount rate and present value concept 173
 10.2.4- Economic indexes 181
 10.2.4.1- Basic considerations 181
 10.2.4.2- Net Present Value (NPV) 184
 10.2.4.3- Benefit/cost ratio (B/C) 184
 10.2.4.4- Internal Rate of Return (IRR) 185
 10.2.4.5- Average Price of the kWh (AP) 187
 10.2.4.6- Payback period (T) 188
 10.2.5- Sensitivity analysis 188
 10.2.6- Application example 188

BIBLIOGRAPHY 191