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Abstract. There is a growing interest in the geometrically exact as@lypf structures. The in-
nate elegance of this king of formulations arises from trecerepresentation of the rotations.
In this case, the rotation vector is parameterized by theeERodrigues formula. The inter-
nal power arises from the first Piola-Kirchhoff stress temand the deformation gradient. A
consistent plane stress condition is imposed in a hypetelasterial to derive the appropriate
(symmetric) constitutive operatarl[1].

In the present work a hybrid method of analysis is proposeerathe solution is obtained
by the approximation of the generalized internal displaeetiields through the Moving Least
Squares (MLS) scheme and the generalized boundary tractimninterpolated by Lagrange
polynomials. To completely eliminate shear-locking pme@oon a consistency requirement is
imposed to the generalized internal displacement fieldseiact reproduction of the Kirchhoff-
Love constraints.

An extension of the arc-length method that includes thergéped internal displacement
fields, the generalized boundary tractions and the load peater in the constraint equation of
the hyperellipse is proposed to solve the resulting noalimoblem. A consistent lineariza-
tion procedure is performed, resulting a semi-definite eaysmatrix which, for hyperelastic
materials and conservative loadings, is always symmegneri for configurations far from a
equilibrium trajectory).

Differently from the standard Finite Element Methods (FEME resulting solution are (ar-
bitrary) smooth generalized displacements and stresssfiéltso, the representation of the ini-
tial configuration is exact, contrary the usual FEM, wher€'aapproximation of the original
problem is made (usually by the assembly of flat elements).
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1 INTRODUCTION
1.1 Historical background

The research on geometrically exact shell models was teitiay Simo and co-workers.
The formulation and parametrization of the model was preseim [2], where the hypothesis
of one inextensible directpused in the present work, was already considered. In theesuient
papers the linear and nonlinear computational aspecte tfidory are dealt. Other perspectives
were latter considered, like through-the-thickness dtrgplasticity constitutive model, time-
stepping conserving algorithms for dynamical analysissrall intersections problems.

Nevertheless, some drawbacks were still present like tleel fer complex configuration
updates and the use a$ésumed straimethods to avoid thehear lockingeffect.

On thetwin papersl[B, 4] a unified theory for beams and shells, respygtiwas presented.
Here, the fundamental variable for parameterizing thetigniatensor is the rotation vector,
delivering an expression for the tangent stiffness whiciisays symmetrﬂ:even far from the
equilibrium path.

Implementation of this theory for beams was presented! infh]ch was latter generalized
to curved rodsl|6] and to accommodate warping and a genuiite $imain constitutive relation
[I7].

In the shell model implementatiohl[1] a constitutive redatiwas derived based on a true
plane stress condition. The generalization presenteld]iad@ommodates the thickness vari-
ation of the shell, thus allowing the use of a full three disienal finite strain constitutive
model.

The traditional version of the Finite Element MetEc(EEM) Is, invariably, the chosen nu-
merical tool to discretize the unknown fields. However, safrtde inconveniences of the FEM
can be overcome by the use of meshfree discretizations(i)ikee need to explicitly set up
incidences relations between nodes (in order to shape stejrend (ii) the lack of equilib-
rium between adjacent elements. Meshfree methods are agwadvell establish tool to solve
engineering problems. For reviews, a.[9] and [10].

The first geometrically exact analysis using meshfree agpprations was presented in]11].
The solution of beam problems was performed by using Moviegst Squares (MLS) to dis-
cretize the generalized displacements fields. Hence, tieedure can be considered an exten-
sion of the element free Galerkin (EFG) [12] for the geoncelty exact analysis of structures.

1.2 Scope of the present work

In the present work an alternative method for the solutioshedl is presented. Instead of the
traditional FEM approach, the previous work][11] is now exted to shell analysis. Hence, a
fresh approximation method is applied to the numericaltsmiLof a, also recent, shell model.

In the FEM context the use of a initial curved elements is ngierative, as established in
[13]. This behaviour can be explained by combining two softseasons. On one hand, in
the FEM thegeometryis described by the elements and, on the other hand, in shediysas
refined mesheare usually required. Thus, the use of assembly of flat elesriermodel shells
is usually acceptable.

For hyperelastic materials and conservative loads, ofsgour

2By traditional version of the Finite Element Method we refi@ithe well known displacement model using
nodal shape functions for approximation both the geomeittlae generalized displacements fields and imposition
of the essential boundary conditions through collocatidon-conventional formulations (like hybrid, mixed or
equilibrium) are not included here.
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Unlike the FEM, in weak form based meshfree projections thele/shell is auniquedo-
mairfl, hence the consideration of initial curved geometriessersal.

A crucial enhancement in the geometrically exact shell fdation for the present work was
the consideration on initially curved shells [14] 15]. Adtlgh developed and implemented in a
FEM framework, the results can be straightforwardly incogbted in the present formulation.
The consideration of possibly curved shells is performed Isymple mapping from thplane
reference configuration to theitial form. All the computations are done over the plane ref-
erence configuration. The theoretical formulation presgim those works supplies a perfect
basic theoretical background for the development of a mestibrmulation.

In order to circumvent the non-interpolation charactehef approximations, which impairs
the use of collocation for imposing the boundary condiﬂoashybrid weak form suitable for
meshless approximations is presented, which includesntieenal virtual work, the external
virtual work and the external complementary virtual worisigag from the kinematic boundary.

The exact parametrization of the rotation tensor is madsutfiv Euler-Rodrigues formula.
As all vectorial parameterizations of the rotation tensor, thosed-form solution has a limited
range of application beyond which a singularity occurs. ¢imumvent this problem, a update
Lagrangian formulation can be used, asiin [11]. Howeverptscommon to face this problem
in shell analysis.

The only kinematical assumption is the plane section hygmithof Reissner-Mindlin. The
inextensibility of the director is complemented by a platness condition. This is imposed over
the the constitutive model, which is the neo-Hookean malteri

The internal virtual work is expressed by the first Piolagkinoff stress tensor and the de-
formation gradient.

1.3 Notation and text organization

Throughout the text italic Latin or Greek lowercase letterd, . . . «, 3, ...) denote scalar
guantities, bold italic Latin or Greek lowercase lettaisy; . .. «, 3, . . .) denote vectors, bold
italic Latin or Greek capital letters4, B, ...) denote second-order tensors, bold Calligraphic
Latin capital letters. A4, B, . . .) denote third-order tensors and bold blackboard itali¢r_edp-
ital letters (A, 1B, . ..) denote forth-order tensors in a three dimensional Ewtidipace. The
same letter is used to identify the skew-symmetric secoddraensorsd, B,... 2,0, ..))
and their associated axial vectar, p, ... w, 0, ...).

The problem is presented in sectldn 2. In sedfion 3 the mgppihthe initial configuration
and the generalized displacements fields are introducethardeformation and velocity gradi-
ents derived. The generalized stresses, the internal paveethe external power are presented
in sectior[#, followed by the proposed variational formiglatof the problem in sectidd 5. The
linearization of the weak form is established in seclibn be Suggested meshfree method and
associated implementation issues are exhibited in sesfiamdB.

2 THE MODEL PROBLEM

Consider the shell exhibited in figuté 1, where three orthorab right-handed coordinate
systems are represented]. for the reference configuratior; for the initial configuration and
e; for the current configuration.

The reference plane is denoted By c R2. The contour off2” is denoted byl™", i. e,

3Subdivisions are possible but not advisable, as the nafihe @pproximation is element free.
4In fact, with an appropriate change of coordinates thisetaigo be archived, see]10].
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Figure 1: The reference, initial and current configuratiofihe shell.

I'" = 9" and can be decomposed BSU [l = I'" and I}y NI = (, wherel;7 and I}
identify the static and kinematic boundaries. The volumié'iand H" = [—hj}, h}] is the shell
thickness, both on the reference configuration. The entipoin/” are collected in the set
C" ={—h},hi}, thusC" = OH".

The reference configuration can be described byhich can be written as

§=¢+a, 1)

where¢ = ¢,el, defines the position of a material point over the middle plainte reference
configuration(?2”, anda” = (e} representes the component along the normal.
The position of the material points in the initial configuoat, (2°, is

x° = 2°+a°, (2)
where the middle surface?, of the initial configuration2° ¢ R? is defined by
z° = 2°(C), 3)
and the normal vector to the initial configuration is given by
a’=Q°%/’, 4)

whereQ?° is the initial rotation tensor.

We assume the applied load vary linearly with a paramateNevertheless, for simplicity,
this dependance will be omitted in the following. The shelinder the action of a body forces,
b°, per unit volume of the initial configuration and tractiomdes,t°, per unit area of the initial
configuration on the top and bottom surfaces. Eventuallyfigaration dependant loads may
be included. In the lateral surfaces the shell is subjedthdreprescribed tractioBste, per unit

5No distinction in the notation is used for traction forcestba lateral surface and top and bottom surfaces.
This identification can be inferred from the context.
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area of the initial configuration, or imposed displacemebtge to the kinematical assumption,
the displacements of a given poiit, on the lateral surface are not independent algnghe
precise definition of the quantities to be imposed to exjijigrescribe the displacements is
introduced latter.
3 KINEMATICS
3.1 The initial configuration and displacement field

The basis? can be obtainétby

(o]

o <1
e; = : (Sa)
REA
2% x 2°
o) 1 2
e;=————" 5b
N Py D)
el =elxe) (5¢)
where(-) , = () /0.
The explicit evaluation oé? , is given by
e, = ! (I —ef®eT) 2 6
1, || 0 1 1 Jla ( a)
Z,1||
1
e =— (I-eS®el) (29 x 25 —2% x2°
3, ||Z,01 X Z,02|| ( 3 ® 3) ( ,1 2a ,2 ,la) (Gb)
6(2),04 = 6?304 X 3?1 + 3?3 X e?1a (6¢)
The initial rotation tensor can be expressed as
Q°=e®e;. (7)

From figure[l it is possible to conclude that the position @f thaterial points on the de-
formed configurationy?, is
T =2z+a. (8)

3.2 Deformation gradient due initial mapping

The initial deformation gradieng™, for the transformation between the reference pléaie,
and the initial configuration2°, is given by

F° — ox° i ox° el — (ZO L Q° QOTCLO) Qe +a® e
8€a « 8C 3 ,Q ,Q « 3 (9)
= (na + Koa®) @ e;, + Q°
where it was introduced the vectey), and the skew-symmetric tensdc?,
n, = 25, — Q% K? = Q?QQOT (20)

and derivatives on scalar parametgiwere denoted by-)" = 90(-)/0¢.

5The order by which the expressions of the basis vectors septed aim, on the one hand, an easy identification
of the involved operations and, on the other hand, shoreesthpressions size.

5
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The latter can be expressed as

K =Q%Q" = (2, ®e!) (eSwe))”

(11)
= (@) (ej@e)) = (el @ e) (€] - €f) =€l @ €]
whose axial vectow?, is given by
kS = Axial (K3) = (e9,, - e3) e? + (€5, - €) €S + (el - €9) €. (12)
Defining the vector

Yo =To + Ko x @ (13)

the initial deformation gradient can be written as
F°=(ng+ kg xa’)@e,+Q° =7 ®e, +Q°. (14)

Hence, the generalized strains in the reference configmajf” andx?", are

ny =Q%ny =Q (2%, —e3) = Q725 — e, (15a)
Ko = Q% ko = Q% ((ed, - €3) ef + (€5, - ef) e3 + (e, - €3) €f)
= (€2 - €5) el + (€5, e]) €3 + (el - €2) €.

(15b)

It is now possible to define the vectgf” through

VY = Qe = Q% (nd + kY, x a®) = QUnd + (QUKY) x (Q%a’) =T + kKT xa'.

(16)
Hence, the initial deformation gradient, as a function & ¢feneralized back-rotated strains,
assumes the form

Fo =o€ +Q° = (QQ7) ® el +Q°

=Q°(I+(QY) ®e,) =Q°(I+77 ®ey) =Q°F” 40
where it was introduced the initial back-rotated tenB6f,
Fr =1+~ ®e. (18)
This tensor may be rewritten as
F" =T+~ ®e., =€/ ®e, +7" @€, (19)
=(en+7)®e, +tesRes=fl e, + ff Qey=f @€
where
fo=e,+7 (20a)
£ =e (20b)
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3.3 Total deformation gradient

From figure[l the middle surface of the current configuratson i
z=2+tu (21)

and we may introduce the effective rotation tenggft, between the initial and current configu-
rations
a = Q%° (22)
where
Q°=1T1+hy(0) O +hy(0) O, (23)

is the Euler-Rodrigues rotation tens@,is the skew-symmetric tensor whose axial vectdt,is
0 = ||0|| is the rotation angle and

_sind 1 [sin(6/2) 2
o) =2 ra6) = 5 |0 (24)
are trigonometric functions. Hence the relatgn= Q° holds.
Taking into account({4),
a = Qe o __ QeQO T __ Qar (25)

whereQ = Q°Q° describes the rotation from the plane reference configurati the deformed
configuration. Thus@ is here denoted by the total rotation tensor.
The total deformation gradienk;, is given by

F = Oz ® el + oz Re,=(z+a) e +(z+a) e}
S0k T Y o¢ T T o e K (26)
= (M. + Kqa)@e, +Q
where the skew-symmetric tenshf, = Q ,Q” and the generalized strain vector
Mo = 25, + Uy — €4 (27)

were introduced.
The latter can be expressed as

K.=Q.Q" =(Q°Q°,(Q°Q°)" = K2 + Q°KQ* (28)

where the skew-symmetric tensdiS’ = Q?QQGT andK? = Q?QQOT were introduced.
The axial vectorK,, is given byk, = Axial (K,) = k¢ + Q°xk2 where the effective
curvature vector i&S = Axial (K$) = I'6 , and the tensof is given by

I'=1+hy(0) O+ hs(0) O (29)
with L b (g
o (6) = -0 (30)

The generalized back-rotated strains are given by

772 = QTna = QT (Z?a + U o — ea) = QT (Z?a + u,a) - e; = QTz,a - eg? (Sla)
Ky = QTka = QT (KE+ Q°RS) = KE + kY. (31b)
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An alternative form of expressing{31b) is
Ko =Q ko = Q" (K5 + Q°k2) = Q7 (I'0, + k7). (32)
Substituting this results in the deformation gradient espion

F=n+Ku)oe,+Q=0Q(Q" (n.+K.a)2el, +1I)

_ QU+ (kX a)@el) = QI el &)

where it was defined the vector
Yo = Mo T Ky X @' (34)

It is still possible to writeF' = QF", whereF" = I + ~! ® €, is the total back-rotated
deformation gradient. This tensor can be written as

Fr=I+y,0e,—€e e +v,0€,=(e,+7,) @€, +e;0e;=f e (35
where

fL=el 4 (362)
£=e (36b)

The total deformation gradient may also be expressed by

Oz Oz ox° .
F_aga_amo oz = FF (37)
from where it can be concluded
Fe=FF° ! (38)

It is possible to evaluate explicitly ! by

PO = (QF) = P = (g7 9 e) QT = (el 0g) QT (39)

whereJ° = det FOTlis given by

JO=det (F”) =det (f @el)=f" - f3 x f5" (40)
and
91 = 2 st» (41a)
g5 = f3" < fr, (41b)
gy = f x £ (41c)

Hence, from[(3B) the effective deformation gradient is

Fe — FFO—I _ Q (fzr ® 6:) Jo—l (6; ® g;)r) QOT — QJO—I (fzr ® g;)r) 5ijQ0T
=Q(ff2e) Q" =Q(f7 ®(Q%)) =Q(ff @¢))

"The superscript in J° was suppressed becauke (F°) = det (F°") and, thereforej® = Jo.

(42)

8
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where
£7=0 0 (g7 - e) (43)
This equation can be particularized to the circumstancejtha o and;j = 3. It can be
proved that

f5 =T (g7 - ey) = f5 = e, (44a)
fo=J7f (g - en) = T 5 (95 - en) + T f5 (95 en) = T (gf - en)
(44Db)

A effective strain deformation vector may now be introduesd
Ve =fy —e,=J"" (e g) (e +75) —en (45)

3.4 \Velocity gradient
The velocity gradient, e., the time variation of the total displacements gradieniismgby

F=(QF)=QF +QF =Q(I+~+.,®€]) + QT+, 2 e})

. (46)
—0QUI+v,ee)+Q(I+v,0e, +v0¢) = 2F +Q (¥, ®e)
where the skew-symmetric tensor of the angular velocity waeduced
2 =QQ". (47)

Notice that
2= (@) (@) = (@°Q°+Q°Q°) Q7QT = Q°Q°QTQT = Q7. (48)

Moreover

Vo= (m + K5 X a7) =1 + KL X " + Ky X 6" =1+ Ky X al. (49)

The terms involving time variations can be set as functidiib@generalized displacements.
Hence,

0= Q20 —ey) = Q20+ Q20— &, = Q" (o + Z,T0) (50a)

i, = (58 + K2) = (Q7wS) = Q"kE + Q"ie = Q" (I +T6.)  (500)

«

where the equalitw , = K, — w X Kk, Was used.
The tensod” ,

F,=hy(0)O,+h3(0)(OO,+ O ,0)+h,(0)(0-0,) 0O +hs(0)(0-0,) O (51)
where® , = Skew(8 ,) the trigonometric functions, (¢) andh; (¢) are

n(@) = 10 ;22h2 ®), s (0) 120 ;23h3 (0) 52)
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The generalized strains of the shell model can be collectéuki vector

ro__ €1 ro__ 772 _ QTza_eg
e’ = LJ where el = [’*J = [Q"T (rTe,a+ng) } (53)

«

The time variation of the generalized strains can be catkot a vector

Q" (uva + Zval“0'>

e = {E.l} where &' = [7.7;“] = . . (54)
€ £ QT (11649 + re,a) .
Introducing the generalized displacements veelpgiven by
u
d= [ 0] (55)
the time variation of the generalized strains can be reoasiel compact form
&' = WAd (56)
where ¥ and A are defined inJ1].
4 STATICS
4.1 Generalized stresses
The jacobian of the displacement field mapping is given by
J = det F' = det (F°F°) = det F®det F° = J°J° (57)
where the effective jacobian i& = det F*.
The effective fist Piola-Kirchhoff stress tensor is given by
Pt = JTFe T (58)

whereT is the Cauchy stress tensor. Solving T0in the previous equation and usirgf, the
total fist Piola-Kirchhoff stress tensor yields

P=JTF " =] (J'PF")F " = JoJ° (J'PoFY) (F°F°) " = J°P°F°". (59)

Taking into accoun{{38) the latter equation can assumeotime f

P=JTF T = JopP° (% (g7 ®el) Q°T) =P°Q°(g)" @ e€j). (60)

As the effective first Piola-Kirchhoff stress tens#tS, can always be expressed as
P =1i®el =QT1 Q€] (61)
equation[[8BD) may be rewritten as

P=(Qr¥2e)Q° (g7 ®e)) = (Qr¥ v el) (g7 ®e))

62
= (QTier ® e;) (g?r : e;-") =Q (g?r : e;-") T ® e; =Q1/ ®e; (©2)

10
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wheret! = (g% - el) 77" or

7 = (9 ep) 78 (63a)
T = (9% e T = (Y Y X f) T = o (63b)

After the imposition of the plane stress state, the streswow®are denoted by )”. Accord-
ingly, equations[{81) and{b2) are modified to

Pt =Q77 ® e’ (64a)
P =Q7/ ®e€] (64b)

respectively.

4.2 Internal power

Resorting[[5P) and(38) and bearing in mind th&t= O, the internal power per unit initial
configuration volume is

Pe.Fe= J'PFT . FFOl = JlP . F. (65)
Taking into accoun{{82) anf{46) internal power per unierefice configuration volume is

P F=P:(RF+Q(¥.®e.)=P:2F+P:Q(¥.2¢€.)

T - : S (66)
=PF": 2+ Q7 ®€]:Q (Y, ®e.) =Th
where the symmetry conditioRF? = (PFT)T was introduced.
Moreover, substitutind(49) ifi.(65) anld {66) delivers
P F=7 4 =7 (Qi+kLxa) =7 -nL+a x 7, kL. (67)

Noticing thatdV° = J°dV" and using the former equation, the total internal powenfed
as

Pn= [ P®:FV° = / JotP  FJodv”
VO (s (68)
:/ / (70 -mn+a” x?g-fég)d(dﬂ’”:/ (nl -0, +m -k.)d2"
where the following stress resultants where introduced
n, :/ T.d¢, m,, :/ a" x T.dC. (69)
Collecting this generalized forces in thé vector as
o' = { 71 } where o' = { "a } (70)
o, ma
the internal power can assume the compact form
Pint :/ o’ -eg"df)". (71D

11
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4.3 External power

The external power may be expressed as

Py = / - 2d0” + / - 2d® + / b &dV°
ot Qob Vo (72)

+ / / t° . 2dcdl? + / / 0. &d¢dr?
Fto 0 3 0

wherer® are the reaction tractions on the kinematic boundary, pegranea of the initial con-
figuration. The former equation can easily be rewritten eréference configuration as

Pextzf (Et~:i:+ib~j:+/ E-:i;dg)dfz’“
or H"
+ / / T dcdly + / / r-adCdlT

if we introduce the definitiofist” = JoF, ¥ = JoF, & = JOF and7® = Jo% with the
notation for the transformation jacobiad$® = J°dV", dR° = JodQ", dN® = J%dnr,
dre = Jjodr;y anddr = Joldrr.

Introducing [Z1) in[[(B) and performing time differentiation both sides and then substitut-
ing the result in[(713) yields

(73)

Pext:/ (ﬁ”-u+m9-w)dﬂr+/ (" -a+m" - w)dIy

rr

(74)
+/rr (n* a4+ mt w)dl]
where,
ﬁ”:?+#’+/ bd¢ mﬂzatxftjtabxfb—k/HaxEdC (75a)
nl = / ‘fld( ml = / ax tdc (75b)
n = / rd¢ m = / a x rd¢ (75c¢)

cross-sectional generalized resultants, per unit lenfytheoreference configuration, are intro-
duced and the superscrip®® and; were simplified taf? and /", as no danger of misinterpre-
tation exists.

It is possible to achieve a even compact form for the extgyaader. By defining the vectors

GQ:PZ] afz{gﬂ qkzm} (76)

the expression of the external powlerl(74) reads

Pyt = / g” - dd" + / g -ddrT + / q - ddrI’. (77)
ry r;

8The superscript stands fotateral.

12
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Here,q“ is the vector resulting from the external loading along thellsniddle plane per refer-
ence are unitg’ is the vector resulting from the external loading on thestatundary and

is the vector resulting from the tractions on the kinematioridary. Notice thgt? = I' m?,

p’ = r'm" andp* = I''m* are pseudo-moments which are energetically conjugatéd wit
6. Notice that the true power conjugate ®fis not simply the moment resultants as usually
happens on geometrically linear theories.

5 VARIATIONAL FORMULATION OF THE PROBLEM

5.1 A constrained weak form

The variation of the generalized strain vector was carrigcba [49), hence
o, =om,, + 0K, x a'. (78)
The variation of the generalized straifisl(31) are analogo (&), hence

onl = Q" (buy+ Z,I60), (79a)
okl =Q" (' 00 +T60,,). (79b)
Resorting to[[56)
de" = WALd. (80)
In view of (&8) the internal virtual work may, thus, be writtas
OWint = / o’ - e"d2". (81)
The external virtual work is
Wext = / g - 6dd" + / g’ -oddIy + / q-oddr’. (82)
’ ry r;

Notice the inclusion of the Virtual Work arising from the kimatic boundary, given by the
projection of the generalized reactions on the virtual ldispments.
The weak form of the equilibrium of the rod can be recast byfdtlewing virtual work
principle
OWint — 0Wexe = 0, in 27,¥dd (83)

wheredd stands for an infinitesimal perturbation of the generaldisplacements field.
Let us now assume that the prescribed displacements ame agve

— T
a-[2] -

i. e, we assume that the prescribed orientation of the kinerpaticof the contour of the shell

is already in terms of the Euler-Rodrigues parameters. mneige, a rotation tensor can be used

to prescribe the displacements. In this case an extractaoedure should be applied, sgel[16].
The weak imposition of the kinematic boundary conditiorexif

_ / 5 (d—d)dIl =0, inI7 Vg (85)
Iy

9The convenience of the introduction of the minus sign is eissed with (i) the attainment of a symmetric
linearized weak form and (ii) the possibility of identifgjg* with the generalized reaction force.

13
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The combination of the Principle of Virtual Work{|83) and tweak constraint imposition
@@38) gives the final weak form, which is the following hybrighictional

oW =0, inf", (86)
where

SW = [ o ded — / g% - 6ddor — / g’ - oddrr
r th

0r

—/ qNaddrg—/ 5g* - (d—d)dry.
ry

I

(87)

Combinations of variational statements were extensivegdufor generating generalized
principles for linear analysis. Here the extension for imedr analysis is accomplished.

If the problem under analysis is conservative, the vamatidorm could be derived from a
constrained stationary potential energy principle.

Besides the usual requirements in order the integralS_ihr&ke sense, no additional re-
strictions are demanded. In particular, the usub= o on the kinematic boundary points;,
is avoided in order to be able to use approximations not linlfithe Kronecker-delta property.

5.2 Recovering the governing equations

In this section the governing equations will be derived frivea derived weak form. Substi-
tuting (79) in [8T) and integrating by partsdm ,, and(I'60) , yields

- / (Rae +707) -6t + IT (Mg + 20 X 1y +707) - 60) AQ"

+/ ((nama —m") - 0u+ (napa — ") - 66) dIy
ry

(88)
T / (name — 1) - S + (napta — 1) - 56) I
_/ (w—) - 60> + (6 — B) - 6p") dIT =0,
ry
wheren, denotes the outward normal compon%ts
The Euler-Lagrange equations bfl88) are
Neo+M=0 nyn,—n =o NeMa —M =0 u—u=o0 (89a)

Moo+ Za X No +M =0 Nofla — . =0 nNafta—p' =0 6—-0=0 (89b)
on the domain{?", on the static boundary;’, and on the kinematic boundatdy;, (the last two
sets), respectively.

The sets of equationE{|89) simply express the equilibrium on the domain and on thecstati
boundary between the applied generalized forces and teealtgeneralized forces. These
are the usual set of equations imposed in a weak sense inaittiiadnal FEM (besides the
pointwise imposition of essential boundary values). Thd&#); are the equilibrium equations
on the kinematic boundary. This apparent contradictionnidact, what is being imposed:
the equilibrium between the internal generalized forces ttwe independently approximated
generalized reaction forces. The $ef (88)the compatibility on the kinematic boundary.

ONotice the subtle difference between the outward normalpmrants;.,, and the force resultants per unit
length on the reference configuratiot,.
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6 LINEARIZATION OF THE WEAK FORM
6.1 Newton/Raphson’s type of incremental/iterative proces

For the solution of the weak form of the problem, statedby,(&1thin a Newton/Raphson’s
type of incrementall/iterative process is crucial to explidkknow the exact tangent operator.
This can be achieved by the consistent linearization of takworm. Here this process must
be performed not only on the generalized displacementssaally is done, but also in the
generalized reaction for

The incremental/iterative perturbatiofy, of the Virtual Work statemenE{86) yields the lin-
earization of the hybrid functional id andg?, i. e., AéW, where

ASW = | ((PASd) - (DPAAd) + (Add) - (GAAd) — 6d - (LYAd)) d2"
o (90)
— / éd- (L"Ad)dI} — / 6d - AgdIT — / 6q* - AddI.
ry ry ry

Here D, G, L* and L" are the constitutive, geometric, load on the domain and toathe
static boundary generalized tangent stiffness operaidwes definition of these can be found on
[14,[15], except for the last term, which was not taken intmait in those works. Nevertheless,
its value can be inferred frodh. For conservative loadings, these two latter matrix ojpesat
are always symmetric. For the common case of only appliedi doethe middle surface both of
these operators are null.

Notice the two last terms o (PO) do not depend on the gererhtlisplacements themselves,
but only on their virtual and incremental/iterative couptats.

7 A MESHFREE METHOD
7.1 Shear locking-free approximation functions

The approximation of theix generalized displacements fields over ptenereference sys-
tem is made through MLS nodal functions. The use of this cesnphd computationally de-
manding, relatively to the polynomial nodal shape fundiased by common FEM, functions
is justified by their (i) reproducing properties and (ii) erent prescribed continuity (which is
limited by the basis and/or the bell-shaped weight fungtion

For the kinematic boundary, simple Lagrange polynomiatsmaused, but other options are
also possible, like one-dimensional MLS, se€ [17].

Hence, consider the following approximatibhs

d = &d q" = ¥q" (91a)
od = ®id 5q* = Uoq (91b)
Ad = ®Ad Aq* = TAQ (91c)

1IAlthough the pure Newton/Raphson is a very robust meth@d;éimplete solution of certain problems can be
greatly simplified by the resource afl hocschemes that combine the variables at stake. This subjiterdealt
in detail in sectiof 812, but, for using this methods, is alsoessary to perform the linearization of the weak form
in the load parameteh. As this parameter varies linearly with the load, the linzstion task is trivial and, thus,
not performed here.

12Notice the subtle difference between the matricial diffieiad operator? defined inl[1] and the matri¥ that
collects the approximation functions of the static bougdeactions.
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for the real, virtual and incremental/iterative fields,pestively. It would be tempting to use
the approximations

41 O @1 O
o0 T 0 ¢

Yl O ypl O
O I =~ O I

(92)

where the possibility of using different functions for desgements and parameters of the Euler-
Rodrigues formula was provided. However, this is not thetrappropriate way due the partic-
ular geometry os shell structures.

The geometrically exact theories are especially intargsti the analysis of slender struc-
tures, where the change of the structural response due tia¢iaa of the configuration is im-
portant. As the shear deformation was taken into accouatstiear-locking presence can be
anticipated. In meshless methods, particulary for the oslggng in the use of MLS approxi-
mation, there isn't, in general, such concepteaiiced integrationas the closed form solutions
for integrals appearing in the generalized residual vemtal the generalized tangent stiffness
matrix are not known (even for linear problems).

Resorting the facilities of the meshless approximationgdnerate arbitrarily continuous
functions, is very easy to chose such approximations teafitthhoff limit is exactly achieved,
[18]. However, it was recently proved, s€el[19], that thisgedure necessarily leads to a singu-
lar equation system, due to the linear dependencies betleapproximation functions for the
rotations. Moreover, except for the one dimensionalfdasee number of dependencies grow
with the order of the basis (in the common case of polynonaaldare used). Nevertheless, if
appropriate solvers are used, this problem can be easilgave.

Let us now derive the Kirchhoff limit constraints for the pamlar notation of the present
theory. If the distortion is negligible, then, from equati@?), 2%, + v, — e, = 0. If 25, = 0

and@ = I + O the constraint¥, = us, andf, = —u3, emerge. Hence, the generalized
displacement fields i (®1should be as
[ (bl ¢n 1
¢1 ¢n
¢1 ¢n
P = . ) 93
¢1,2 ¢n,2 ( )
¢1,1 ¢n,1
| le ¢n |

Notice the presence dirst order derivatives on displacements and rotations inshdif-
ferential operator. Accordingly,* continuity is mandatory for the approximations. As MLS
approximations are being used, this task is trivial to aqalesh. In fact, usually, higher conti-
nuity is used in order to obtain continuous generalizedssts.

Frequently the measures of the error of the FEM are basecdeatigbontinuities of the stress
fields (i) between elements and (ii) on the static boundarghé present formulation possible
mesures of the error can be derived from (i) on the discoityiraf the generalized stresses
on the static boundary, (ii) on the error between the inddpetly approximated generalized
stresses on the kinematic boundary and the same stressestegddrom the domain approxi-
mation and (iii) on the error in the imposed displacements.

131n one-dimensional approximation only one dependencyfigl; is introduced.
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7.2 Discretized form of the residual vector and generalizetangent stiffness matrix

The use of the approximatioris{91) in the hybrid functiol&)( after some algebraic ma-
nipulations, yields

R=0 Vdd, oq" (94)
whereR is the the residual vector
[ P+Bqd
R_{BTd%—ﬁ} (95)
and
P = / (A®)" #Tamd" — / &Tg?d0" — / oTghdry, (96a)
T T Ftr
B=- / Twdrr, (96Db)
ry
q= / wlddrr. (96¢)
ry

The use of the approximatiorls{91) in the generalized tarfgem (@0), after some algebraic
manipulations, yields

KAa  Vd,éq (97)
where A
S B d
K= { BT 0 } and Aa= [ AQ } (98)

ands is the the generalized stiffness matrix

S :/ <(A<I>)T ITD W (AD) + (AD) G (AD) — <1>TL9<1>) 4o’

' (99)

- / 'L ®dr;.
ry

The identification of the location of the bifurcation poirgsnade by the study of the eigen-
values of the discretized form of the generalized tangédifitass matrix [9B). Notice that the
dependencies introduces via the approximation shouldkes tato account, because they give
rise to (numerically) null eigenvalues. Also, for each présed displacement a negative eigen-
value will appear. The rule for determining the exact nundfenull eigenvalues is given in
[19].

In the frequent case were the shell middle surface is not #maodl is, in fact, an assembly
of several smooth shells, it is also possible to analyze ltlseaby including continuity condi-
tions on the intersections in the weak foriml(87). Of cours&aedegrees of freedom will be
associated to the intersection and the residual velcibra{@b}he generalized tangent forml(98)
will exhibit a somewhat complex form.

8 IMPLEMENTATION ASPECTS
8.1 Evaluation of the nodal approximation functions

The success of the presented method crucially depends thre (@ccuracy and (i) the per-
formance of the evaluation of the nodal functions.
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The accuracy of the evaluation of the nodal functions isnately linked to the discretiza-
tion adopted and the size of the reference domain, becaasadments matrix present in the
normal system of equations, to be solved during the MLS fanstevaluation, can be poorly
conditioned. A very efficient way of solving this problem®tuse of a local coordinate system
centeredat the sample (usually Gauss) point. In this way the perfageas not affected and
the moment matrix is always well conditioffédin fact, the performance is slightly increased
as the value of the basis function and its derivatives arayvihe samedependentlyf the
sample point considered.

As for the performance of the evaluation of the nodal fundidwo aspects should be taken
into account. On one hand, the inversion of the moments xantd their derivatives should be
avoided, as described in_[20]. On the other hand, as the valudne nodal functions and their
derivatives, at the integration points, are required mamgs along the incremental/iterative
process, it is desirable to evaluate and store them at therbeg of the process.

8.2 A generalized arc-length method

The solution of the resulting nonlinear system of equati@®h is achieved by the use of
an incremental/iterative approach. The full Newton/Raph®ethod should be combined with
some (non-physical) constraint in order to trace the fudbiog path of the shell.

To be consistent with the approximations made, this coimétshould not include only gen-
eralized displacements and loads, but also should rendeyetheralized boundary tractions on
the kinematic boundary. Therefore, the following arc-léngpnstraint that nonlinearly relates
the incremental/iterative generalized displacementgeand load parameter with a certain
constant, the arc-length/, is introduced

AdTWIAd + ABTWOAD + ANMTWARY + AMMTW™AM? + ?AN2 = A2 (100)

whereW'’s are weighting matrices which are, at least, positive sagfinite diagonals and is
also a scaling parameter. Thus, the Crisfield’s methad [21 generalized in order to include
the essential boundary reactions, resulting in a robustastgrocedure.

8.3 The initial configuration description

The initial configuration can be expressed by several waysolvious procedure, used for
linear shell analysis ir [22], is to resource MLS. In this veagort ofisoparametricapproxima-
tion is performed. Nevertheless, there is no reason whyxiaetinitial configuration should
not be used. Thus, the tegeometrically exaafjains a new meaning in the present context.

9 CONCLUSIONS

A meshless method for the structural analysis of shells wesemted. The shells can have
an arbitrary initial configuration. A geometrically-exagiproach was incorporated in a hybrid
functional, so the essential boundary conditions are iregp@ga Lagrange multipliers. The con-
stitutive tensor was derived from a three dimensional nedtiaw by a plane stress imposition
and allows the consideration of finite strains. The MLS nddacttions used for the domain are
shear-locking free. Several implementation aspects wisoeisised.

140f course, the usual conditions on the number of points irstipgort and their disposition also apply here.
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