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Abstract

The Element-Free Galerkin (EFG) method is used for the analysis of free vibrations
in beams and plates. The associated eigenvalue problem is obtained from a modified La-
grangian functional which provides a suitable constrained Galerkin weak form. In this way
the kinematic boundary conditions are included through the introduction of Lagrange mul-
tipliers. Numerical tests are conducted on beams, plane states and thin plate bending plate.
The effect of varying parameters such as the basis, the number and position of the nodes is
assessed.

1 Introduction

For several types of continuum mechanics problems, namely crack propagation, shape optimiza-
tion, contact, the mesh is an issue in itself: it may be difficult to devise an appropriate mesh
due to geometry complexity and/or the solution process may require frequent remeshing. The
time taken in creating the mesh (or remeshing) is often several times more than the time needed
to form and solve the system of equations. To avoid or reduce the mesh related difficulties,
several alternative methods, commonly known as meshless methods [4], have been proposed:
the Smoothed Particle Hydrodynamics (SPH) method, the Diffuse Element Method, the Repro-
ducing Kernel Particle Method, the Element–Free Galerkin (EFG) method [5], the hp-Clouds
Method and the Partition of Unity Finite Element Method, among others.

Meshless methods, in its various approaches, have been applied to a series of engineering
problems. The eigenvalue analysis using meshless methods was addressed before by, among
others:

• Nagashima [12] used the Node-By-Node Meshless (NBNM) method to analise two dimen-
sional problems;

• the authors [14] used Radial Basis Functions and a collocation approach to analise several
unidimensional solid mechanics problems;

• Liu et al [11] used the EFG for the analysis of shells;

• Liu [10] used the Meshless Local Petrov-Galerking (MLPG) to analise two dimensional
elasticity problems, the EFG to analise thin and thick plates and the Local Point Interpo-
lation Method (LPIM) for beams;

Application of the EFG method to the study of free vibrations in beams and plates is the subject
of the present work. Unlike the referred above works, no singular value decomposition is applied
to the eigenvalue problem obtained.

The performance of the approach is shown by several numerical 1D and 2D tests.
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2 MLS approximations functions

MLS functions were developed, among others, by Lancaster and Salkauskas [9] to approximate
curves and surfaces.

Consider a domain, Ω, containing a given set of scattered nodes xi(1 ≤ i ≤ n). Over this set
a continuous function, u, assumes the values ûi. The MLS approximation of u over Ω, ũ(x), is
given by:

ũ(x) =
m∑

i=1

pi(x)αi(x) = pT (x)α(x) (1)

where p(x) is a linearly independent basis of m functions,

pT (x) =
[

p1(x) p2(x) . . . pm(x)
]

and α(x) collects the undetermined parameters of the approximation,

αT (x) =
[

α0(x) α1(x) α2(x) . . . αm(x)
]

where each term is a function of the position x ∈ Ω.
The parameters α(x) are found at any x point by minimizing the following weighted least

squares discrete L2 error norm:

J(x) =
n(x)∑
i=1

wi(x − xi)
[
ũ(xi) − Ûi

]2
=

n(x)∑
i=1

wi(x − xi)
[
pT (xi)α(x) − Ûi

]2
(2)

where wi(x − xi) is a weighting function which is nonzero on the influence domain of the node
xi, thus generating a local approximation and sparse matrices.

Only the xi nodes whose influence domains contain the x point will appear in the sum (2).
The dimension of the influence domain of each node and the choice of the weighting function
are decisive parameters for the approximation by MLS.

Minimizing J(x) in order to the unknown parameters α(x) results in

α(x) = A−1(x)B(x)U (3)

where
B =

[
w1(x − x1)p(x1) w2(x − x2)p(x2) . . . wn(x − xn)p(xn)

]
, (4)

A =
n(x)∑
i=1

wi(x − xi)pT (xi)p(xi) and UT =
[

U1 U2 . . . Un

]
. (5)

Substituting the result (3) for α(x) in the initial approximation (1), this expression can be
written in the usual form

ũ(x) =
n∑

i=1

φi(x)Ui = Φ(x)U (6)

where

φi(x) =
m∑

j=1

pj(x)
(
A−1(x)B(x)

)
j i

= pTA−1Bi,

Φ(x) =
[

φ1(x) φ2(x) . . . φn(x)
]
.
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3 The eigenvalue problem for solid mechanics

In this section the eigenvalue problem for two dimensional elasticity problems is addressed. The
generalization for thin beams and plates, presented in the numerical examples, is straightforward.
The resulting expressions are the same and only the definitions of the generalized stresses,
σ, generalized strains, ε, generalized displacements u, generalized accelerations ü, generalized
elasticity operator, D, and differential operator, L, have to be changed.

Let Ω be a open set with piecewise smooth boundary Γ. The boundary can be decomposed
in the static part, Γt, and the kinematic part, Γu, thus Γ = Γt ∪ Γu, Γt ∩Γu = ∅ and Ω = Ω∪Γ.

The equilibrium equations, in the absence of body forces, are

LT σ = ρü (7)

where

σ =


σxx

σyy

σxy

 , L =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 and ü =
{

ü
v̈

}
.

The compatibility requires
ε = Lu (8)

where εT = {εxx εyy εxy} and uT =
{

u v
}
.

The constitutive equations are given by

σ = Dε (9)

where, assuming a plane stress state,

D =
E

1 − ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


and E is the elasticity modulus and ν is the Poisson’s ratio.

The (homogeneous) boundary conditions are given by

u = 0 (10a)
Nσ = 0 (10b)

where N is the matrix of the unit outward normal components associated with the differential
operator L.

4 Variational form of the eigenvalue problem

The variational form of the eigenvalue problem can be derived directly from the Hamilton’s
Principle:

δ

∫ t2

t1

L dt = 0 (11)

where L is the Lagrangian function of the system, leading to the generalization of the well known
principle of virtual work for an undamped vibration system:∫

Ω
δεT σdΩ +

∫
Ω

ρδuT üdΩ = 0. (12)

(Recall that it is assumed that no body forces and prescribed tractions are applied).
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In equation (12) it is assumed that the approximation of the displacement field meets the
kinematic boundary conditions, but the MLS approximation (1) does not satisfy the Kronecker
delta criterion: ΦI(xJ) �= δIJ . One possible way to include such restrictions is the use of a
generalized variational form as presented by Washizu [15] and Liu [10]. Using a modified La-
grangian in (11) which includes the kinematic boundary conditions through the use of additional
variables, results in the following variational form:∫

Ω
δεT σdΩ −

∫
Γu

δλTudΓu −
∫

Γu

λT δudΓu +
∫

Ω
ρδuT üdΩ = 0. (13)

The additional variables are the Lagrange multipliers λT =
{

λu λv

}
.

For the free vibration problem the system responds in harmonic motion and the separation
of variables technique can be used. The displacement field takes then the following form:

u(x, t) = u(x) sin(ωt + ϕ) (14)

where ω is the circular frequency of the system and ϕ is the phase angle. Substituting (14)
in (13) and using (7), (8) and (9) it follows∫

Ω
δ(Lu)TD (Lu)dΩ −

∫
Γu

δλTudΓu −
∫

Γu

λT δudΓu +
∫

Ω
ρω2δuTudΩ = 0. (15)

5 Discrete equations

The expression of the MLS approximation (6) for a two dimensional elasticity problem is rede-
fined as follows:

ũ = ΦU (16)

where

ũ =
{

ũ
ṽ

}
,Φ =

[
φ1 0 . . . φn 0
0 φ1 . . . 0 φn

]
and UT =

{
U1 V1 . . . Un Vn

}
.

Taking variations over (16) results in
δũ = Φ δU. (17)

The discretization of the Lagrange multipliers is made by resorting to the traditional Lagrange
interpolants of the conventional Finite Element Method (FEM):

λ = NΛ (18)

where

N =
{

N1 0 . . . Nnλ
0

0 N1 . . . 0 Nnλ

}
and ΛT =

{
λu1 λv1 . . . λunλ

λvnλ

}
and nλ is the number of nodes associated with the discrete variables that provide the interpo-
lation for λ.

Taking variations over (18) results in

δλ = NδΛ. (19)

Using the approximation (16) and (17) for the fields u and δu and the expressions (18) and (19)
on (15), for arbitrary variations of δu and δλ, the discretized form of the eigenvalue problem is
given by [

K − ω2M G
GT 0

]{
U
Λ

}
= 0 (20)
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Figure 1: Properties of bar subjected to axial vibration.

where

K =
∫

Ω
BTDBdΩ, M =

∫
Ω

ΦT ρΦdΩ and G = −
∫

Γu

ΦTNdΓu.

The corresponding eigenvalues of problem (20) are the solutions of∣∣∣∣ K − ω2M G
GT 0

∣∣∣∣ = 0. (21)

6 Numerical examples

The basis p used in the examples is given by polynomials: pT =
{

1 x x2 . . .
}

for 1D and
pT =

{
1 x y x2 xy y2 x3 x2y xy2 y3 . . .

}
for 2D.

The nodes are equally spaced and the background cells for the integrations are defined by
the spaces between the nodes. In all examples Gauss-quadrature is used.

The numerical implementation was carried out MATLAB [8] with calls to LAPACK [1] being
made to solve the generalized eigenvalue problem (20).

6.1 One-dimensional vibration examples

The distance dm i is equal for all nodes and is taken as the minimum distance that makes the
matrix A in expression (3) non-singular at all Gauss points.

The weighting function used is the quartic spline

w(x − xi) =

{
1 − 6r2 + 8r3 − 3r4, if ‖x − xi‖ ≤ dm i

0, if ‖x − xi‖ > dm i

(22)

where r = ‖x−xi‖
dm i

and dm i is the size of the influence domain.

6.1.1 Axial vibration

Consider the cantilever represented in Figure 1. The exact solution for the vibration circular
frequencies and mode shapes [6] is given by

wn =
π

2
(2n − 1)

√
EA

ρL2
, φn = C sin

[π

2
(2n − 1)

x

L

]
n = 1, 2, 3, . . .

Figure 2 shows the error in the first ten frequencies obtained for different number of nodes with
a linear basis. A five sampling points integration rule was used. A comparison of the first five
modes shapes is presented in Figure 3 for the ten node discretization.

Figure 4 shows the error in the first four frequencies obtained with different number of
elements in the basis, m. A fifteen sampling points integration rule was used due to the increase
of the highest exponent in the basis. Exact solutions would be obtained if sine waves basis were
to be used.
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Figure 2: Frequency relative error for bar subjected to axial vibration with a linear basis,
pT = {1 x}.
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Figure 3: First six vibration mode shapes for bar subjected to axial vibration with linear basis
and ten nodes.
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Figure 4: Frequency relative error for bar subjected to axial vibration with ten nodes.
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Figure 5: Properties of beam subjected to flexural vibration.
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Figure 6: Frequency relative error for bar subjected to flexural vibration with a cubic basis,
pT = {1 x x2 x3}.

6.1.2 Flexural vibration

Consider the simply supported beam represented in Figure 5. The exact solution for the vibra-
tion circular frequencies and mode shapes [6] is given by

wn = n2π2

√
EI

ρL4
, φn = C sin

(nπx

L

)
n = 1, 2, 3, . . .

Figure 6 shows the error in the first ten frequencies obtained for different number of nodes with
a cubic basis. A ten sampling points integration rule was used.

A comparison of the first five modes shapes is presented in Figure 7 for the fifteen node
discretization.
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Figure 7: First five vibration modes shapes for beam subjected to flexural vibration with cubic
basis and fifteen nodes.
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Young’s modulus E = 2, 1 × 104 kgf/mm2

Poisson’s ratio ν = 0, 3
Mass density ρ = 8, 0 × 10−10 kgf s2/mm4

Thickness t = 1 mm
Height D = 10 mm
Length L = 100 mm

Table 1: Cantilever beam on plane stress properties.

Mode ADINA EFG MLPG NBNM
4221 nodes 22 nodes 63 nodes 124 nodes 306 nodes 306 nodes

1 822,13 869,76 824,71 822,57 844,19 824,44
2 4 931,95 5 175,71 4917,67 4 887,02 5070,32 5051,21

Table 2: Plane stress cantilever beam: first two cyclic frequencies [Hz].

6.2 Two-dimensional vibration examples

The weighting function used in this work is [2]

w(x − xi) =

{ (
1 − ‖x − xi‖2/d2

m i

)s
, if ‖x − xi‖ ≤ dm i

0, if ‖x − xi‖ > dm i

(23)

where dm i is the size of the influence domain of the ith node.
Linear Lagrange interpolation functions were used for the matrix N in the expansions (18)

and (19).

6.2.1 Plane state

Consider now a cantilever beam with properties as in Table 1, modelled as a plane stress state.
This problem was previously analyzed by Nagashima [12] by the Node-By-Node Meshless method
(NBNM) and Liu [10] using the Meshless Local Petrov-Galerkin method (MLPG) [3].

A linear basis was used, pT =
{

1 x y
}

and the size of the influence domain was set equal
to three times the distance between nodes (which was equal in both directions). The parameter
s in expression (23) was taken equal to 2.

The results obtained for the first two natural frequencies are compared with other solutions
in Table 2. The ADINA [7] code was used to generate a solution with 1 000 traditional elements
(9 node Lagrangian element) and 4221 nodes.

The solutions with 22, 63 and 124 nodes correspond, respectively, to 1×10, 2×20 and 3×30
divisions of the beam in each direction. A six points quadrature rule in each direction, in each
cell, was used.

The first two vibration modes for the solution with 63 nodes are displayed in Figure 8. The
background cells and the nodes are also displayed.

6.2.2 Plate bending vibration

Consider a square simply supported thin plate with side length a, thickness h, flexural stiffness
D = Eh3

12(1−ν2)
.

The exact solution for the frequencies, neglecting the rotary inertia, is given by Reddy [13]:

ωmn =
π2

a2

√
D

ρh

(
m2 + n2

)
.
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(a) First vibration mode. (b) Second vibration mode.

Figure 8: First two vibration modes of plane stress cantilever beam.
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Figure 9: Frequency error for simply supported plate.

A cubic base, pT =
{

1 x y x2 xy y2 x3 x2y xy2 y3
}

was used. The domain of
influence is always square and its length is four times the node spacing. The nodes are located
at square grid positions corresponding to 5, 10, 15 and 20 divisions of the length of the plate.
The parameter s in expression (23) was taken equal to 3. Due to symmetry, the second and third
modes have the same frequency, thus the corresponding lines in the figure are nearly identical.

The first four vibration modes are represented in Figures 10, 11, 12 and 13.

7 Conclusions

In this work an implementation of the EFG method for the analysis of one-dimensional and
two-dimensional free vibration problems was presented.

The variational statement for the eigenvalue problem is discretized with the use of Lagrange
multipliers.

The resultas obtained show the accuracy and the good convergence properties of the tech-
nique. Further developments should include the analysis of forced vibrations.
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Figure 10: First vibration mode. Figure 11: Second vibration mode.

Figure 12: Third vibration mode. Figure 13: Fourth vibration mode.
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