

	INTRODUÇÃO
	Sistemas de Protecção Sísmica: São dispositivos que melhoram o comportamento sísmico das estruturas sem o recurso à capacidade de deformação das estruturas. Podem actuar alterando as características dinâmicas da estrutura ou aumentando a sua capacidade de dissipar energia.
	Classificação dos Sistemas de Protecção Sísmica:
	Sistemas Passivos – não necessitam de fornecimento de energia
ıfi	 Sistemas Activos – necessitam de energia para controlar o movimento da estrutura
	Sistemas Semi-activos – necessitam de energia para modificar as características dos dispositivos

	Método	s de An	álise – II	mportânci	a de cada	. modo	
			Base	Fixa	Isol	ada]
		Modo	%Massa	Acum.	%Massa	Acum.	
		1	85.369	85.369	99.917	99.917	
		2	10.562	95.931	0.078	99.995	
		3	3.242	99.173	0.004	99.999	
		4	0.826	99.999	0.001	100.00	
INSTITUTO SUPERIOR TECNICO ICIST	No case represe	o da estr nta a quas	utura com e totalidade	isolamen e da repost	to de bas a.	e o prime	iro modo

	Exemplos de Aplicação – Portugal
INSTITUTO SUPERIOR TÉCNICO ICIST	

	Regulamentação
	Actualmente já existe regulamentação a regular a aplicação de isolamento de base a edifícios e a pontes.
	Estados Unidos:
	Uniform Building Code (UBC) – International Conference of Building Officials
	Guide Specifications for Seismic Isolation Design – AASHTO
	Europa:
IG	Eurocódigo 8 (Capítulo 10)
IJIJ	Eurocódigo 8 – Parte 2, Pontes (Capítulo 7)
INSTITUTO SUPERIOR TÉCNICO	Norma Italiana
ICIST	

	Ар	oios Elastom	éricos –	Rigidez Ver	tical	
	K com I ($\begin{aligned} \zeta_{\nu}(\gamma) &= \beta_2 \frac{G S^2 A}{h_{el}} \\ \zeta_{\nu}(\nu) &= \frac{E_b A}{h_{el}} \\ \zeta_{\nu}(\nu) &= \frac{E_b A}{h_{el}} \\ \zeta_b - \text{módulo de com} \\ G - \text{módulo de dista} \\ \zeta_2 - \text{coeficiente que} \end{aligned}$	(rigidez verti (rigidez por apressibilida prção do ela depende da	ical devida à di variação de vo de do elastóm astómero ($G \sim 0$ a forma da sec	storção) lume) ero ($E_b \sim 2000$ MPa); 0.7 a 2.0 MPa); eção:	
ıG		β2		(Kelly, 1993)	(CEN/TC 167, 2001)	
U		bloco com secção	o circular	6	5	
INSTITUTO SUPERIOR TÉCNICO		bloco com secção	quadrada	6.73	5	
ICIST						

Qualificação de Sistemas - Tipos de Ensaios Os ensaios de caracterização devem permitir determinar:	
Os ensaios de caracterização devem permitir determinar:	Qualificação de Sistemas - Tipos de Ensaios
 Amortecimento. Devem também permitir avaliar a influência dos seguintes parâmetros na rigidez e no amortecimento: Temperatura; Envelhecimento; Carga vertical; Frequência de aplicação das cargas. É ainda necessário garantir a estabilidade do apoio à aplicação simultânea de deformação horizontal e carga vertical. 	Os ensaios de caracterização devem permitir determinar: • Rigidez horizontal; • Amortecimento. Devem também permitir avaliar a influência dos seguintes parâmetros na rigidez e no amortecimento: • Temperatura; • Envelhecimento; • Carga vertical; • Frequência de aplicação das cargas. É ainda necessário garantir a estabilidade do apoio à aplicação simultânea de deformação horizontal e carga vertical.

	Amortecime	ento		
	Nos dissipadore influenciada pela inicial. Outro pa cedência. Se a f poucas vezes, di Relação k ₂ /k ₁	s histeréticos a form a relação entre a riç râmetro que tambén força de cedência for ssipando menos ener	a do ciclo força-de gidez após cedênc n é marcante é o r muito elevada o c rgia.	eformação é muito ia (k ₂) e a rigidez valor da força de lissipador plastifica
	k ₂ /k ₁ = 1%	k ₂ /k ₁ = 5%	k ₂ /k ₁ = 10%	k ₂ /k ₁ = 50%
ſĵ	Relação Força-Do	eformação		
INSTITUTO SUPERIOR TÉCNICO				Amortecimento

	Amortecimento
	Nos dissipadores viscosos a forma do ciclo força-deformação é condicionada pelo valor do parâmetro α.
	Valores de α Relação Força-Velocidade $\alpha = 0.10$ $\alpha = 0.25$ $\alpha = 0.50$ $\alpha = 1.00$ $\alpha = 1.80$
INSTITUTO SUPERIOR TECNICO ICIST	Relação Força-Deformação Amortecimento

